
Cryptanalysis of Hash Functions
In particular the SHA-3 contenders Shabal and Blake

Nieke Aerts

August 2011

Cryptanalysis of Hash Functions
In particular the SHA-3 contenders Shabal and Blake

Nieke Aerts
Under supervision of

Josef Pieprzyk & Benne de Weger
Macquarie University & Eindhoven University of Technology

August 22, 2011

Abstract

Since NIST announced the SHA–3 competition in 2007, many new attacks to hash functions have
been born. We tried to understand and apply these new attacks to the second round candidate
Shabal and the final round candidate BLAKE.
In Chapter 2 we set out the definitions used in this thesis and we describe different attacks. In
Chapter 3 we set forth the previous analysis of Shabal and our own ideas. In the same way
we discuss BLAKE in Chapter 4. In the last Chapter we discuss the comparison of these two
functions.

Contents

1 Introduction 4
1.1 NIST competition . 4

1.1.1 Security Requirements of SHA-3 . 4
1.2 Attacks on Hash functions . 5
1.3 Cryptanalysis in the competition . 5
1.4 Thesis Outline . 5

2 Preliminaries 6
2.1 Hash Function/Hash Algorithm . 6

2.1.1 Cryptographic hash function versus standard hash function 6
2.1.2 Basic Properties . 6
2.1.3 Applications . 7

2.2 Iterative Hash functions . 7
2.2.1 Padding . 8
2.2.2 Merkle-Damgård . 8

2.3 Cryptanalysis . 10
2.3.1 Security Criteria of Hash functions . 10
2.3.2 (In)Differentiability . 12
2.3.3 Linear Cryptanalysis . 12
2.3.4 Differential Cryptanalysis . 14
2.3.5 Boomerang Attack . 17
2.3.6 Rebound Attack . 18
2.3.7 AIDA/Cube Attack . 19

3 Shabal 22
3.1 The mode of Operation . 22

3.1.1 The Compression function R . 23
3.2 Recent Analysis . 24

3.2.1 On the permutation only . 24
3.2.2 On the compression function R . 25
3.2.3 On full Shabal . 25

3.3 Indifferentiability . 25
3.3.1 The original proof of Indifferentiability . 26

3.4 Indifferentiability with a biased permutation . 36
3.4.1 Conclusion on the Indifferentiability proofs 48

3.5 Neutral Bits . 48
3.6 Does Shabal differ from a random function . 50
3.7 Message extension Attack . 51
3.8 The initial values . 52

2

Cryptanalysis of Hash Functions

3.8.1 Changing one of the internal variables . 52
3.9 T–functions . 53
3.10 Linear Cryptanalysis . 54
3.11 Expanding the pseudo–collision attack . 54

3.11.1 Finding a near–collision . 55
3.12 Rotational Attack . 56
3.13 Shift Attack . 57
3.14 Differential Attack . 58

3.14.1 Combination of attacks . 59
3.15 Algebraic properties of Shabal . 59

3.15.1 Algebraic collision test for l ≤ log2(r) . 60
3.15.2 Collisions for l > log2(r) . 60
3.15.3 Application to Shabal . 61

3.16 Conclusions on the security of Shabal . 63
3.16.1 Ideas of further Analysis . 63

4 BLAKE 64
4.1 The mode of operation . 64

4.1.1 The compression function . 64
4.1.2 Toy versions of BLAKE [1] . 66

4.2 Recent Analysis . 67
4.2.1 On the inner primitive G . 67
4.2.2 On toy versions . 67
4.2.3 On round–reduced versions . 67

4.3 On the full function . 68
4.4 Properties . 69

4.4.1 The round function is a permutation . 69
4.4.2 Differential Properties . 71
4.4.3 Fixed points of G . 77
4.4.4 On one round . 78
4.4.5 On the compression function . 79
4.4.6 Bounds on the probability of DC’s for BLAKE 79

4.5 Conclusion . 82

5 Comparison between Blake and Shabal 83
5.1 Hardware requirements & speed . 83
5.2 Security . 83

A Notations 90

B on Shabal 92
B.1 Differential Attack of Novotney . 92

C on BLAKE 95
C.1 Initial Values and Constants . 95
C.2 Impossible States . 96
C.3 Proofs on output (∆, 0, ∆′, 0) . 97
C.4 Construction of Fixed Point Algorithms . 113
C.5 Proof on DC’s . 114

D Proofs on combinations of operations 115

Nieke Aerts 3

Chapter 1

Introduction

1.1 NIST competition

NIST began the standardization of hash algorithms in 1993 when they published the SHA-0
algorithm. Soon after, the algorithm was replaced by SHA-1 due to security issues of SHA-0. In
2001 the Merkle-Damgård based SHA-2 hash family was added to the standard hash algorithms
by NIST. In 2005 SHA-1 was theoretically broken which called for the need to use the stronger
algorithms of the SHA-2 family.
In November 2007 NIST wrote out the request for candidate new hash algorithm families re-
ferred to as SHA-3. Up until now, no attack on SHA-2 is known, but a collision in the SHA-2
family would have catastrophic effects for digital signatures. Therefore the new hash family
should be able to immediately replace SHA-2 if necessary. The requirements for submissions
for the SHA-3 contest were published in [2].
NIST received sixty–four entries in 2008, of which fifty–one advanced to the first round. In 2009
fourteen candidates were selected for the second round. Meanwhile cryptanalysts all over the
world were analyzing the candidates.
In December 2010 the five finalists were selected, of which one will be selected as winner in the
spring of 2012.

1.1.1 Security Requirements of SHA-3

The security requirements were published in [2, Part 4.A]. Here I will state the most important
ones considering this thesis1.

1. It should be possible and secure to use the hash family for a wide variety of cryptographic
applications, including digital signatures, key derivation, hash-based message authentica-
tion codes and deterministic random bit generators.

2. Support HMAC, Pseudo Random Functions (PRF) and Randomized Hashing

• the PRF must resist distinguishing attacks that require much fewer than 2n/2 queries
and significantly less computation than a preimage attack.

• the construction for Randomized Hashing must be resistent to the following attack:
the attacker chooses m1, the hashing algorithm processes this message with a to the
attacker unknown randomization value r1, now the attacker tries to find a second

1As the research for this thesis consists of Cryptanalysis, we will only state the requirements considering this.

4

Cryptanalysis of Hash Functions

message m2 and a randomization value r2 such that m2 with r2 is mapped to the
same hash as m1 with r1. The construction should have at least n bits of security.

3. Collision resistance of approximately n/2 bits

4. Preimage resistance of approximately n bits

5. Second-preimage resistance of approximately n− k bits for any message shorter than 2k

bits2

6. Resistance to length extension attacks

7. Any m–bit hash function specified by taking a fixed subset of the candidate’s function
output bits is expected to meet the above requirements with m replacing n

1.2 Attacks on Hash functions

Hash functions are used in many different applications, so an attack in one application is not
necessarily an attack on every application. For a hash function to be broken one should be
able to find a preimage, a second-preimage or a collision in feasible time. A hash function is
computationally broken if one of those can be found with effort less than 2#output bits, but none
has been found yet. The security of a hash function is questioned if there is a distinguishing
attack, such that the attacker can distinguish the hash output from the output of a random
oracle.

1.3 Cryptanalysis in the competition

The authors of contending functions and many more cryptologists are currently analyzing the
hash fucntions of the SHA–3 contest. Several functions in the first round were broken. All of the
second round contenders were thoroughly analyzed. This has helped the committee of NIST to
decide which functions progress to the next round.

1.4 Thesis Outline

Chapter 2 is a preliminary chapter, it contains a small introduction to hash functions, many
notations are borrowed from Menezes, van Oorschot and Vanstone [4], and a description of
analysis and some attacks to hash functions.
In Appendix A we summarize the notations used in this thesis.
The third and fourth chapter are organized identically, they start with a description of the
function, secondly an overview of recent work is given, followed by some analysis of my own
and ending with a conclusion. Chapter 3 considers the second round candidate of the NIST
competition Shabal and Chapter 4 considers the final round candidate BLAKE.
Chapter 5 compares the two functions Shabal and BLAKE.

2A method to find second preimages in less than 2n time is given by Kelsey and Sneier [3].

Nieke Aerts 5

Chapter 2

Preliminaries

2.1 Hash Function/Hash Algorithm

A hash algorithm converts an arbitrary length message into a fixed length output. If x is mapped
to y by the hash function, we will call y the hash or the digest of x.
Definition 1 (Hash function). H is called a hash function if it maps messages of arbitrary length to
images of finite length l:

H : {0, 1}∗ → {0, 1}l

and given an input x, H(x) is easy to compute.

2.1.1 Cryptographic hash function versus standard hash function

This report only considers cryptographic hash functions. There is a difference between crypto-
graphic and other hash functions, but the sets are not disjoint. By cryptographic hash functions,
you should think of one-way functions, it should be impossible to find the inverse in feasible
time. Standard hash functions are mostly used to define a lookup system, for example the way
we use a dictionary. A word starting with an “A” can be found in the beginning of the dictio-
nary, a word starting with a “W” almost at the end, our brain maps the letter “A” to “somewhere
in the first part of the dictionary”. This is certainly not one-way, as the hash will reveal (a part
of) the message. Realizing that you are looking in the first part of the dictionary, you can tell
you were looking for something starting with an “A”.
Obviously, using a (partly-)invertible function while trying to hide the message is of no use. But
using a cryptographic hash function to define a lookup function will not lead to a big problem,
it might not be as fast since cryptographic hash functions tend to be more complex than stan-
dard ones.
From here, hash function or hash algorithm will always refer to the cryptographic variant.

2.1.2 Basic Properties

A hash algorithm should have the following three properties:

• Preimage resistance Given an output y, it is computationally infeasible to find an input x
such that y is the hash of x.

• Second–preimage resistance Given an input x and its hash y, it is computationally infea-
sible to find a second input x′ such that y is the hash of x′.

6

Cryptanalysis of Hash Functions

• Collision resistance It is computationally infeasible to find two inputs, x and x′ such that
that are mapped into the same output.

All three contain the phrase computationally infeasible, this statement will be explained in Sec-
tion 2.3.1.

2.1.3 Applications

Hash algorithms can be used to validate the identity of the author or the integrity of a mes-
sage. A hash function can be used in a digital signature scheme to validate the authenticity of
a message. A valid digital signature gives a recipient reason to believe that the message was
created by a known sender, and that it was not altered in transit. As a hash algorithm should
be second–preimage resistant, given the hash of a message, it is impossible to find a second
message consistent with this hash. So given a message1 and its hash one can check whether the
message has been altered after the hash was generated.
In commitment schemes hash algorithms are often used to prove knowledge of the message
without revealing the message. In example, Alice wants to show Bob that she knows the answer
to a question without revealing the answer, she sends the hash of the answer to Bob. Later Alice
can show the answer and Bob can check if the hash Alice gave earlier really is the hash of the
answer.
The hash of a document can be used to identify the document.
A hash algorithm can be used to simulate a random bit stream, using it as a so–called pseudo-
random bit generator.

2.2 Iterative Hash functions

A hash algorithm is used to hash a message of arbitrary length. But most mathematical functions
are defined on a space in which all elements have the same “size”. So for a hash algorithm to
be able to process arbitrary length messages we often use a transformation to transform the
message into blocks of specified length. Then a particular function (on a fixed size domain) can
be applied to all the blocks consecutively.
An iterative hash function consists of the following steps:

• Initialization: Padding, State–initialization.

• Compression: Processing the message blocks.

• Finishing: Truncation, Final Function.

Now some compression functions are similar to others in terms of the operations they contain,
the following classes are quite common2:

• ARX: The compression function only contains modular Addition, Rotation and eXclusive
OR.

• S–box: The compression function contains a substitution box.

• Wide Pipe: The internal state in the compression function is larger than the digest.

1This can either be the message, the message and the name of the author or only the name of the author.
2Some notations are borrowed from [5]

Nieke Aerts 7

Chapter 2: Preliminaries

• Narrow Pipe: The internal state in the compression function is smaller than the digest.

2.2.1 Padding

To transform a message into a sequence of blocks of fixed length n, a message can be padded
and then chopped into n–bit blocks. There are different padding methods. The most trivial one
is to add a minimal number of 0-bits at the end of the message, until the message has length a
multiple of n. Obviously, this is not a bijection as messages x and x||0 are both mapped to the
same message as long as the length of x is not a multiple of n.
To obtain a bijection one could first append a 1-bit to the message, followed by as many 0-bits
as needed.
Another way of padding is to reserve a fixed number of bits, k, at the end where the length of
the original message is stated. So a message is padded with a 1, a certain number of 0’s followed
by the bit-representation of the length in k bits. This method leads to prefix-free messages, but
not necessarily prefix-free message blocks.
Definition 2 (Prefix–free). A set is said to be prefix–free if for all elements x there does not exist an
element y 6= x such that y concatenated with some non–empty c gives x = y||c.

2.2.2 Merkle-Damgård

Merkle and Damgård both published about the same such transformation at almost the same
time [6, 7], this explains why nowadays this construction is called the Merkle-Damgård con-
struction (or MD–construction).
We let X be a set of elements and we want H to map a concatenation of an arbitrary number
of elements of X to a concatenation of m elements of X. We let X∗ the set of arbitrary length
concatenations and Xk the set of length k concatenations.
Let F : Xn → Xm be a function that maps elements of Xn to elements of Xm, for n > m. Now
we define H using F.
Let M ∈ X∗ be the input of H. We want the length of M to be a multiple of n−m so we pad M
such that length(M) = t(n−m), where t is a strictly positive integer. Let M = M0|| . . . ||Mt−1.
The Merkle-Damgård construction consists of t rounds of F. In the first round an initialization
value3 is used, IV ∈ Xm. After each round an intermediate value is computed Hi, which we will
call the Chaining Variable3. Now let H0 = IV. Then:

Hi = F[Mi−1||Hi−1], i = 1, . . . , t

Now Ht is the output of H.
Obviously Mi−1||Hi−1 is of length n and so F[Mi−1||Hi−1] is well defined. Thus we can conclude
that H is defined to map an arbitrary length input to a fixed length output and H is a hash
function.

Vulnerability of MD

The Merkle-Damgård construction is vulnerable to length extension attacks, if the hash of an
unknown message y is known, then the hash of Pad(y)||c can be found for any c, where Pad is
the padding function.
Let us look into an MD construction H with compression function F . The padding function

3We will use either “value” or “variable”.

8

Cryptanalysis of Hash Functions

consists of adding an appropriate sequence of zero’s.
Suppose the hash of a certain message y of length precisely one block is known, h = H(y) =
F (y). Then for any extension of this message x = y||c the hash can be produced without
querying x to the construction, in the following way: query c||h to F to produce

h∗ = F (c||h) = F (c||H(y)) = F (c||F (y||IV)) = H(y||c) = H(x)

where IV is the initialization value.

How to protect an MD construction to length extension attacks

Coron et al. describe several methods to protect an MD construction against length extension
attacks [8].

Prefix–free Recall that a code is said to be prefix-free if for all codewords x there does not
exist a codeword y 6= x such that y concatenated with some c gives x = y||c. Now to make the
full sequence of message blocks to be prefix–free, there are many mappings, of which we will
describe two, given by Coron et al. [8].
After the message is padded and divided in blocks, we prepend one block containing the mes-
sage length. Let n be the bitlength of a message block. Now for two full sequences of message
blocks x 6= y to have x = y||c we must have that the representation of the original message
length is the same. For this to happen either the length of x equals the length l of y, which gives
a contradiction, or the length of x must be l + 2n, which will be represented as l too. Most hash
functions admit at most a 264–bit input, and the message blocks are at least 64 bits, so the latter
case will not cause any problem.
A second method prepends a zero to every but the last message block. As the compression
function requires n–bit input blocks, the message is padded to be a multiple of n− 1, then di-
vided in blocks of length n− 1, then a zero is prepended to all but the last block, the last block
is prepended with a one. Since only the last block can start with a one in this method, this must
be a prefix–free set.
Coron et al. prove that the combination of any prefix–code in an MD construction yields an
indifferentiable system. Indifferentiability will be discussed later in this chapter. For now, a
prefix–free code will surely make the length extension attack impossible and that is what we
were after, so we consider this system secure.

The Chop solution Another way to protect against the message extension attack is to chop
off part of the last chaining variable before returning it, i.e. if the chaining value consists of
n bits, only output a subset of those bits of size n − s. This way the attacker does not know
the full chaining variable, and the message extending technique shown before, can not be used.
If the set of dropped bits is too small, the attacker can guess the missing bits of the chaining
variable and use the message extension technique to find the hash of the larger message x with
high probability. For example, if s = 1, there is only one output bit missing from the chaining
variable, it can either be 1 or 0 and the attacker guesses the hash of x correctly with probability
1/2.
The drawback of this method is that its security is strongly related to s, the number of bits that
are chopped. It is proportional to N22−s, where N is the number of queries, so for the function
to be secure s has to be relatively high, which means that short-output hash functions such as
SHA-1 and MD5 cannot be fixed using this method. However, functions such as SHA-512 can

Nieke Aerts 9

Chapter 2: Preliminaries

naturally be fixed (say, by setting s = 256).
The chop solution is also referred to as truncation.

NMAC An NMAC construction applies a final transformation to the last chaining value before
it is returned. This transformation should be independent of the compression function. The
length extension attack is no longer possible as the intermediate chaining value will not collide
with the hash output of the smaller message y.

HMAC Instead of an independent final transformation as in NMAC, HMAC uses the com-
pression function again but as input we use the last chaining variable and the initial value. The
chaining variable of length m takes the place of the message block of length k and is either
padded with zeros if m < k, chopped if m > k or left unchanged if m = k. Again, the length
extension attack is no longer possible as the intermediate chaining value will not collide with
the hash output of the smaller message y.

2.3 Cryptanalysis

Recently a lot of new attacks have been introduced to the world of cryptography. Especially
since the NIST SHA-3 competition started in 2007, many new ways of attacking a hash function
have been discovered. In the following paragraphs some attacks are clarified, ordered by date
of first use. But first we will explain the criteria of security of a hash function.

2.3.1 Security Criteria of Hash functions

The security of a hash function is often measured in how many queries are needed to find

(1) a preimage,

(2) a second–preimage and

(3) a collision.

We say that a problem is computationally infeasible if even the fastest computer can not solve
the problem within a normal amount of time, e.g. a human lifetime. If (1), (2) and (3) are
computationally infeasible, the hash function is considered secure.

Breaking

A hash function is theoretically broken if the number of queries for any of the three is less than
the best brute force attack. A hash function is broken if a collision is known or if there exists an
algorithm that given an output finds a preimage (or a second–preimage) in feasible time. Let n
be the bit–size of the digest, then the number of queries needed for a brute force attack are

• 2n for a preimage,

• 2n for a second–preimage and

• 2n/2 for a collision.

10

Cryptanalysis of Hash Functions

Brute Force Attacks

Let H : {0, 1}∗ → {0, 1}n be a hash algorithm that maps an arbitrary length message to a hash
of length n.
Given a hash y, a brute force attack to find a preimage, selects messages randomly, queries the
messages, until the function returns y. Using this, one expects to find the preimage after at most
2n queries.
The birthday–attack is a brute force attack to find a collision, there are many different algo-
rithms for this attack, for example with Yuval’s birthday attack using Floyd’d cycle finding al-
gorithm [4]. The birthday–attack uses that with high probability, there exists a pair of colliding
messages in a random selection of 2n/2 messages.

Semi–breaking

As cryptanalysis advanced, newer hash functions needed to resist more attacks and their designs
are often more complex to protect the function against to these attacks. Because of this, one
started to relax the requirements, and defined three types of relaxations, so–called near, pseudo
and free–start.
For a pseudo–collision one can choose the chaining variable independently for each message.
That is, instead of using the initial values or a valid4 chaining value, one can choose two (not
necessarily equal) chaining values. These chaining values together with two (not necessarily)
different messages that are mapped to the same image using the chaining values, are called
pseudo–collision. So if for chaining variables h∗, h∗∗ and messages m, m′

Hh∗(m) = Hh∗∗(m′)

holds, it is a pseudo–collision.
Similarly a pseudo–preimage is a message which given some chaining value, is mapped to the
image.
A free–start–collision is a little stronger than a pseudo–collision. Here only one chaining value
can be chosen, and two different messages. Now if the messages are mapped to the same
image using the chosen chaining variable, we have found a free–start collision. Formally, for the
chaining variable5 h∗ and the messages m, m′ we have a free–start collision if

Hh∗(m) = Hh∗(m′).

When two different messages are mapped to almost the same image starting with the same
initial values, we call it a near–collision. We say that the images are almost the same if the
Hamming distance (HD) is very small. Let the Hamming distance of a near–collision be at most
n− l, then we say that we have a l–bit near–collision. So we should have

HD[HIV(m),HIV(m′)] < n− l

where n is the number of bits of the digest. And likewise, if a message is mapped into a value
close to value for which we seek a preimage, we call it a near–preimage.
One can also combine two of the relaxations, e.g. a near–pseudo–collision is a has two different
chaining values and two messages which are mapped to almost the same image.

4We call a chaining variable valid if a sequence of message blocks that leads to this chaining value is known.
5The chaining variable does not have to be a valid chaining variable, that is, the attacker does not need to know how

to achieve this.

Nieke Aerts 11

Chapter 2: Preliminaries

Security Concerns

Even if a hash function has not been broken in any way described above, there might be con-
cerns about its security. Ideally the digest will give no information on the input, even a little
information can be crucial for the security of a hash function. Hash digests are therefore often
compared to random outputs, when a hash function behaves like a random oracle then the di-
gests will not reveal any information. We will discuss the comparison of a hash function with a
random oracle in the following section.

2.3.2 (In)Differentiability

Two systems E and F are said to be differentiable if there exists a distinguisher D which is able
to tell whether it is communicating with E or F in feasible time. For example, if there exists a
set of inputs S such that for f ∈ S we have:

Pr[E(f) = d] > ε + Pr[F (f) = d]

then querying a small number of elements of S will suffice to decide with which system you
are communicating. Here a small number is approximately ε times the number of elements
in S. If there exists no such distinguisher then two systems are said to be indifferentiable.
(In)differentiability is formally defined by Maurer et al. [9].

Indifferentiability is based on the comparison of two systems, the implementation of the crypto-
graphic construction and a random oracle. A random oracle selects outputs of n bits randomly.
If there exists a distinguisher D which is able to decide correctly (with high probability) with
which of the two systems it is communicating, we call the system differentiable from a random
oracle. The two systems are named CP for the implementation of a cryptographic construction
C based on the random function P and SO for the simulator based on a random oracle O.
A system is indifferentiable if the probability that the distinguisher chooses the correct system,
is negligible. The advantage of the distinguisher is defined as

ADV(D, C) = |Pr
[
DQ = 1|Q = (CP ,P)

]
− Pr

[
DQ = 1|Q = (SO ,O)

]
|

where Q represents the system (undefined which one).
If for a hash algorithm, there exists a distinguisher with a large advantage, the algorithm is not
yet broken, but there are concerns about the security. In the near future it could be possible
that more is known on how to proceed if there is a non-negligible bias in the output of a hash
algorithm and therefore such a system might be broken in the near future.

2.3.3 Linear Cryptanalysis

Linear cryptanalysis was first used on the cipher FEAL by Matsui and Yamagishi [10] and is
still mainly used on ciphers to recover key bits. First the system is linearized and if there exists
some (approximate) expression for a plaintext, ciphertext pair P, C, and the key K, we could use
this to recover some key bits. We call this a known–plaintext attack. Let is, js and ks represent
bit positions, if

P[i1]⊕ . . .⊕ P[in]⊕ C[ji]⊕ . . .⊕ [jm] = K[k1]⊕ . . .⊕ K[kl]

12

Cryptanalysis of Hash Functions

will hold with probability p 6= 1/2, some key bits can be recovered with an algorithm, e.g. the
following algorithm [11]:

Algorithm: Key Recovery

1. Let T be the minimum number of plaintexts such that P[i1]⊕ . . .⊕ P[in]⊕ C[ji]⊕ . . .⊕ [jm] = 0
2. If T > N/2, where N is the number of plaintexts known,
then guess K[k1]⊕ . . .⊕ K[kl] = 0 (when p > 1/2) and 1 (when p < 1/2)
else guess K[k1]⊕ . . .⊕ K[kl] = 1 (when p > 1/2) and 0 (when p < 1/2)

The number of plaintexts, T, can be determined by finding the success probability of the equa-
tion and multiply this with the total number of plaintexts.

Application to Hash Functions

Unless the bias is extremely high, linear cryptanalysis will not lead to an attack for a hash
function. So linear cryptanalysis will not provide us a way to find a collision, pre–image or
second–pre–image, but it might give us insight on the security.
Hash functions usually contain a non-linear operation, this could be a substitution box (S-box)6,
modular addition, modular multiplication etcetera. Linearizing this operation is often expen-
sive, i.e. the probability of success will be very small.

Linearizing modular addition We approximate modular addition with the bitwise exclusive
or (XOR) operator ⊕. For the first bit we will always have equality, but for the other bits we
only have equality if there is no carry from the previous bits. We have for the modular sum s of
a and b:

s0 = a0 ⊕ b0
c1 = a0 · b0
si = ai ⊕ bi + ci , i > 0

ci+1 = ai · bi ⊕ ai · ci ⊕ bi · ci , i > 0

where c represents the carry.
Now for bit–position i > 0 we have (a + b)i = (a⊕ b)i if and only if the carry ci = 0. We let n
be the bitlength of the words, so we have addition modulo 2n. We estimate the probability as
follows:

Pr[a + b = a⊕ b] = Pr[∀i > 0 : ci = 0]
= Pr[∀i ≥ 0 : ai · bi = 0]
= Pr[∀i ≥ 0 : ai = 0∨ bi = 0]

=
(3

4
)n−1

.

So if we replace all modular additions by XOR’s in a hash function operating on n–bit words
and originally containing r modular additions we find probability(

3
4

)r(n−1)
.

that the output is the same as in the original hash function.

6S-box is a permutation of the (small) subsequences of bits, e.g. for a 128–bit sequence an S-box could replace every
four bits with the four–bits–image under the permutation.

Nieke Aerts 13

Chapter 2: Preliminaries

Linearizing modular multiplication with a constant First we will look at linearizing multipli-
cation by three, and then we will look at the more general case. Multiplication with by 3 can be
written as a combination of shifts and additions:

3 · a = a + a�1 .

So again we have to linearize the modular addition, so we approximate 3 · a with a⊕ a�1 and
for the probability of equality we find:

Pr[3 · a = a⊕ a�1] = Pr[a + a�1= a⊕ a�1]

=
(3

4
)n−2

.

There is one factor less than for addition, since for a�1 we have (a�1)0 = 0.
For the general case we have to use the binary representation of the constant d, let this be
dn−1 . . . d0. Then we find

d · a =
n−1

∑
i=0

di · a�i .

Let {j0, j1, . . . , jt} = {i : di = 1}. Then we approximate the modular addition with exclusive or,
and find the probability of equality to be

t

∑
k=1

(
3
4

)n−1−jk
.

Linearizing AND (∧) First we will look at the AND operation on two bits, as it is a bitwise
function, this can be easily extended to a word. We estimate the probability as follows:

Pr[xi ∧ yi = xi ⊕ yi] = Pr[xi · yi = xi ⊕ yi] =
3
4

.

As for only one bit–combination (xi = 1, yi = 1) we have xi ∧ yi = 1 and for any linear operation
on two bits we find two combinations, there is no better linear approximation. Since the bits are
independent, we can easily extend this to words:

Pr[x ∧ y = x⊕ y] =
(

3
4

)n

Nowadays most hash function contain many elements to make the function not linear, e.g. the
permutation of Shabal has 48 multiplications by 3, 48 multiplications by 5, 48 AND’s and 36
additions for each message block. It operates on 32–bit words, so n = 32. The probability
that a message block input in the linearized version gives the same output as in the original
permutation is approximately 2−2276. For an ideal random permutation on 896 bits this would
be 2−896, so the linearization does not help us in this case. In Section 3.10 linear cryptanalysis
on Shabal is discussed.

2.3.4 Differential Cryptanalysis

Differential cryptanalysis has been discovered by two parties independently, the first publication
is attributed to Biham and Shamir, they used XOR differences to attack DES (Data Encryption

14

Cryptanalysis of Hash Functions

Standard) [12]. A few years later Coppersmith stated that IBM had known about the differen-
tial attack since the development of DES and had built it to be strong against this particular
attack [13].
Differential analysis studies the behavior of a pair of inputs with a known difference through
the hash function. There are different types which could be studied, for example the XOR dif-
ference (⊕), the rotational difference (≪), the shift difference (�) or the modular addition (+).

For a hash function a differential input pair (x, x � ∆), where � represents the type of dif-
ference, could give a related output pair (F (x), f∆(F (x))). If such a relation holds, then one can
certainly distinguish the hash function from a random oracle.
For most hash functions, such a relation will never hold with probability one. So there are two
ways of relaxing this statement. First the relation does not have to hold for the whole output, if
there are certain bits for which a differential relation holds, the function may already be distin-
guishable from a random oracle. Secondly, the probability with which the relation holds can be
estimated, and if this is high enough the function can also be distinguished.
In the attack the difference between the two variables is known, but this does not define the
variables, i.e. one could have a difference in the first byte, so at least one of the eight bits in the
byte of ∆x = x� x� ∆ is flipped with respect to x, but the precise difference is unknown. This
is why the relation will not always hold with probability 1.

Differential properties

Differential cryptanalysis has evolved over the years and there is still much to discover. Different
type of differences have different advantages and disadvantages. Many hash functions are
designed to have many different operations, such that there is no difference proceeding through
the whole function with probability 1. Over the years more different ways of differential attacks
became known, we will highlight a few of those.
Daum proved a few theorems on XOR and modular addition differences [14]. The proof of each
theorem is given in Appendix D.
Daum does not only look for equality, but also some low–weight non–zero difference, e.g. 2n−r.
We will state some of Daum’s results now:

Pr[(x + y)≪r= x≪r +y≪r] = 1
4 (1 + 2−n−r + 2−n + 2−r)

Pr[(x + y)≪r= x≪r +y≪r +2n−r] = 1
4 (1 + 2−n−r + 2−n + 2−r)

Pr[(x + y)≪r= x≪r +y≪r +1] = 1
4 (1 + 2−n−r + 2−n + 2−r)

Pr[(x + y)≪r= x≪r +y≪r +2n−r + 1] = 1
4 (1 + 2−n−r + 2−n + 2−r) .

Lipmaa and Moriai studied XOR differentials through modular addition and multiplication [15].
Indesteege and Preneel used this study for XOR differences of words with small Hamming
weight to attack EnRUPT7 [16]. Isobe and Shirai use this for a differential attack on Shabal [17].
Let

ij = 0 1 . . . 1︸ ︷︷ ︸
n−j−1

0 . . . 0︸ ︷︷ ︸
j

7EnRUPT is a first–round–candidate of the SHA–3 competition

Nieke Aerts 15

Chapter 2: Preliminaries

and wt is the weight function, i.e. the Hamming distance of the word and the all zero word. Let
∧ represent the AND function, then the following probabilities are given:

Pr[(x + y)⊕ ((x⊕ α) + (y⊕ β)) = α⊕ β] = 2−wt((α∨β)∧(232−1))

Pr[3x⊕ 3(x⊕ α) = α⊕ α�1] = 2−wt((α∨(α�1))∧i1)

Pr[3x⊕ 5(x⊕ α) = α⊕ α�2] = 2−wt((α∨(α�2))∧i2)
.

In Appendix D we also prove some (more) statements for shifted pairs, rotational pairs, and
pairs with a XOR difference.

Combined differential analysis

As most hash functions are based on modular addition as well as exclusive or, the combined
differential has a higher success probability.
For example if we have two XOR differences, say ∆x = 0001, ∆y = 1111, which go trough
addition, we find many possibilities for he new XOR difference:

x x′ y y′ ∆(x + y)
0001 0000 1111 0000 0000
0001 0000 0000 1111 1110
0011 0010 1111 0000 0000
0011 0010 0000 1111 0010
0101 0100 1111 0000 0000

. . .

And if we would have modular addition differences, say δx = x − x′ = 1, δy = 15, which go
through exclusive or, we again find many possibilities for the new difference:

x x′ y y′ δ(x + y)
1 0 15 0 14
2 1 15 0 12
3 2 15 0 14
4 3 15 0 8

. . .

Studying the combination of a XOR difference and a modular addition difference, leads to a
more precise variable. Suppose we know the start differences δx = 1, δy = 15, then δ(x + y) = 0

δx δy x x′ y y′ ∆(x + y) δ(x + y) δx + δy
1 15 0001 0000 1111 0000 0000 0 0
1 15 0011 0010 1111 0000 0000 4 0
1 15 0101 0100 1111 0000 0000 8 0
1 15 0111 0110 1111 0000 0000 12 0
1 15 1001 1000 1111 0000 0000 0 0
1 15 1011 1010 1111 0000 0000 4 0
1 15 1101 1100 1111 0000 0000 8 0
1 15 1111 1110 1111 0000 0000 12 0

Now we know that the variables must be either

x = 0001, x′ = 0000, y = 1111, y′ = 0000 or x = 1001, x′ = 1000, y = 1111, y′ = 0000

16

Cryptanalysis of Hash Functions

Wang used this method to break MD5 [18].
The advantage of having a smaller solution space is that more information is known about what
a difference does in certain operations of the hash function, for example, for which bitpositions
there is a carry when modular addition is applied.

2.3.5 Boomerang Attack

The boomerang attack was first described by David Wagner, he used this to attack several ci-
phers, COCONUT98, FEAL and Khufu [19]. The attack relies on the existence of high probability
differential paths for half the encryption operation.
For example, assume that the encryption operation E consists of two quite similar rounds, E0
and E1, thus E(m) = E1(E0(m)). Now if for both of the rounds there exists a high probability
differential, but it is difficult to match the two differentials, the boomerang attack can be very
useful.
In the boomerang attack, we need three differential message pairs: P, P′, P, Q and P′, Q′. Let
E(P) = C, E(P′) = C′, E(Q) = D and E(Q′) = D′. Now for these message pairs and their
images, we want the following equations to hold:

P⊕ P′ = ∆ ∧ E0(P)⊕ E0(P′) = ∆∗

C⊕ D = ∇ ∧ E−1
1 (C)⊕ E−1

1 (D) = ∇∗
C′ ⊕ D′ = ∇ ∧ E−1

1 (C′)⊕ E−1
1 (D′) = ∇∗.

That is, we want to constrain the differences of the messages P, P′, their images, and the dif-
ferences of the outputs C, D and C′, D′ and their preimages. The goal of the attack is that now
Q⊕Q′ = ∆ and E0(Q)⊕ E0(Q′) = ∆∗.
The boomerang attack is an out-in-out attack, it starts with the messages and the digests, meets
in the middle and goes back to the messages.

Figure 2.1: The boomerang attack

Nieke Aerts 17

Chapter 2: Preliminaries

Construction of the attack We start with generating messages P and P′ = P⊕ ∆. These are
queried to find the digests C and C′. Then we set the other two digests D = C ⊕ ∇ and
D′ = C′ ⊕∇. Finally D and D′ are decrypted to find Q and Q′.
If all characteristics are satisfied, you will end with two messages Q and Q′ such that Q′ =
Q⊕ ∆.
When the equations above hold, we have:

E0(Q)⊕ E0(Q′) = E0(P)⊕ E0(P′)⊕ E0(P)⊕ E0(Q)⊕ E0(P′)⊕ E0(Q′)
= E0(P)⊕ E0(P′)⊕ E−1

1 (C)⊕ E−1
1 (D)⊕ E−1

1 (C′)⊕ E−1
1 (D′)

= ∆∗ ⊕∇∗ ⊕∇∗ = ∆∗.

Application to Hash Functions

The boomerang attack is immediately applicable to hash functions. The attack can be applied
to the inner primitive and is very useful if there exists a high probability differential path for
the first half of the inner primitive, but when the path is extended to the full primitive the
probability of success decreases rapidly.

2.3.6 Rebound Attack

The rebound attack is an attack with two phases, an inbound phase and an outbound phase.
The element to attack is divided in three parts. For example, if the hash algorithm consists of 5
rounds, it can be divided in 2, 1 and 2 rounds. If the first two and the last two rounds are linear
functions, and the middle round is not, then the differentials for the middle round will decrease
the probability for the differential of the full function. Therefore it would be convenient to solve
the middle round first and then expand this forward and backward to the input respectively the
output.
In the rebound attack the middle part can contain one or more rounds. The differential for the
middle part is solved first. We choose the input and the output of the middle part and match
this via a meet-in-the-middle attack. Then the two outer parts are solved from the inside out.
This attack is especially useful when the element contains substitution boxes (S-BOX).

Figure 2.2: The rebound attack

In Figure 2.2 we consider a function with an inner state of 16 words. The state is changed four
times and the grey blocks represent the words which contain a difference. We start by choosing
the second and the fourth state, these are matched in the middle (state 3) and if that is successful,
we try to expand the attach by moving outwards from state 4 and 2.

18

Cryptanalysis of Hash Functions

2.3.7 AIDA/Cube Attack

The cube attack was first described by Dinur and Shamir [20]. Although Vielhaber stated that
it is the same as his earlier published attack “AIDA” [21, 22], the general view is that the Cube
Attack is surely an improvement of AIDA. The goal of the cube attack is to describe secret
variables by a low degree polynomial of public variables. Each boolean function8 p(x1, . . . , xn)
admits an Algebraic Normal Form (ANF), i.e.

p(x1, . . . , xn) = a0 + a1x1 + . . . + anxn + a1,2x1x2 + . . . + a1,...,nx1 · . . . · xn.

Let I be a subset of indices. We write tI for the product of all xi for which i ∈ I and let lI be the
number of elements in I. Now we can factor tI out of some terms of the ANF polynomial:

p(x1, . . . , xn) = tI pS(I) + q(x1, . . . , xn).

Here pS(I) is called the superpoly of I in p. The superpoly is as large as possible, i.e. every term of
q misses at least one variable of tI and the superpoly is the sum of the terms of tI . The elements
in tI are called the cube variables. Now tI defines a lI–dimensional cube CI and if all elements
of tI are set (to either 0 or 1) we have a vertex of the cube. Each vertex υ of the cube defines a
polynomial pυ, as the binary presentation of the vertex give the coefficients of the polynomial.

Lemma 1. For any polynomial p and a subset of variables {xi : i ∈ I} we have

∑
υ∈CI

pυ ≡ pS(I) mod 2.

First we note that for every term of q(x1, . . . , xn) is added an even number of times in ∑υ∈CI
pυ,

since for xj ∈ tI and xj 6∈ q(x1, . . . , xn) it is added for xj = 0 and for xj = 1. So these terms will
cancel modulo 2.
The term tI pS(I) only exists when υ is the all 1 vector (otherwise tI = 0).
Now it is easy to see that

Proof.
∑υ∈CI

pυ mod 2 = ∑υ∈CI
tI · pS(I) + q(x1, . . . , xn) mod 2

= ∑υ∈CI
tI · pS(I) mod 2

= 1 · pS(I) mod 2.

We call tI maxterm if pS(I) is of degree 1, so pS(I) is a linear polynomial but not a constant. Now
the superpoly of a maxterm can be computed via blackbox queries to the algorithm.

• The free term is the sum of the images of all the vertices of the cube (all other bits are
zero).

• The coefficient of xj 6∈ tI is the sum of the images of all the vertices of the cube, where bit
xj is one and the remaining bits are zero.

Now each output bit can be described by a polynomial in terms of the input and key bits.
This is especially applicable to stream and block ciphers, since they use key bits (secret) and
have a bit output (public). For a cipher (part of) the key can be exposed, for a hash function,

8A boolean function is a function that maps {0, 1}n to {0, 1}m for some n and m.

Nieke Aerts 19

Chapter 2: Preliminaries

some output bits will be known without a query to the function and thus is it possible to dis-
tinguish the function from an ideal random function.
Biham and Chen first described neutral bits in the context of cryptographic functions [23]. They
used neutral bits to find collisions.

Definition 3 (Neutral bits). Let R be a relation that holds for couples of messages, for example m⊕
m′ = δR, and letMR be the set of couples that satisfy this relation. Let m be a message, then m[i] is m
with bit i complemented. And for a set s = {i, j, . . .}, all bits at the bit–positions in s are complemented
in m[s] = m[i, j, . . .].
For (m, m′) ∈ MR, a bit i is said to be neutral if also (m[i], m′[i]) ∈ MR.
A pair of bits i, j is said to be neutral if for (m, m′) ∈ MR also the messages arising from complementing
any subset of the bits, are inMR:

(m[i], m′[i]), (m[i, j], m′[i, j]), (m[j], m′[j]) ∈ MR.

Similarly, a set of bits S is neutral if for any subset s ⊂ S:

(m, m′) ∈ MR ⇒ (m[s], m′[s]) ∈ MR.

And, a set of bits S is k–neutral if any subset s ⊂ S of size k is a neutral set.

The precise usage of neutral bits may differ, but the general idea is that the relation is invariant
under alternating the bits.
To find a set that is maxterm, Dinur and Shamir describe a random start search [20].

Random start search

Use the black box polynomial as a polynomial in the secret variables with as input the public
variables. When searching for an image, use input respectively output, when searching for a
preimage, use output respectively input.
First pick a random index set of chosen size. Then compute the sum over the cube given by the
index set (the other public positions are static, could be random or all zero9). Now if this gives
a (non-constant) linear function in the secret variables, this set might lead to an attack. If the
function is non-linear, the index set might be too small and we should restart after adding one
more public variable to the cube. If the function is constant, the index set might be too big, so
restart after dropping a public variable.
If after a restart one is send backwards, there might not be a solution containing this set, so
restart with a new randomly chosen set.
There is some uncertainty in the precious statement because there are situations in which one
can not find a helpful index set.

For the attack we need a sufficient number of index sets which give a linear polynomial in
the secret variables. Then by solving the set of equations one could find linear equations for
some secret bits.

9Dinur and Shamir state that these can be random, but use all zero in their application [20]. Zhu, Yu and Wang state
that using random values will lead to many failures [24]

20

Cryptanalysis of Hash Functions

Cube tester

A Cube tester is a distinguisher between the system with the hash algorithm and a random
function, based on cube search. For example there could be output bits of the hash function,
which are neutral if compared over specified input bits (the cube variables), e.g. the sum over
the cube with the neutral bit 0 is equal to the sum over the cube with the neutral bit 1. For
example, if we had

f (x1, . . . , xn) = x2 ⊕ . . .⊕ xn

we could let the set of cube variables be the empty set and x1 is neutral under this set:

f (0, x2, . . . , xn) = f (1, x2, . . . , xn).

The bigger the set of cube variables, the larger the complexity of the attack, as we need to sum
over all cube variables.

Nieke Aerts 21

Chapter 3

Shabal

Fourteen hash functions advanced to the second round of the NIST SHA–3 competition [2],
Shabal is one of them. Shabal has been submitted by Jean–François Misarsky et. al. The name
of the algorithm was chosen as a tribute to Sébastien Chabal, a French rugby player known
for his aggressive playing as well as his beard and long hair which got him the nickname of
“Caveman” [25].
The authors claim Shabal to be indifferentiable from a random oracle, even when the inner prim-
itive is biased.
In December 2010 NIST announced the final round candidates, Shabal was not one of them.
In February NIST released the document describing the reasons for their decisions [26]. The
security claimed by the authors was not threatened at the time of the decision, but the non–
randomness of the inner primitive raised concerns. The renewed proof of indifferentiability
which takes the bias of the inner primitive into account, did not convince NIST that Shabal
would remain secure and is the main reason that Shabal did not advance to the final round.
Nevertheless I enjoyed working on Shabal even after knowing that they where out of the com-
petition. In this chapter I will first describe Shabal, discuss the recent analysis and the indiffer-
entiability proofs. Then I will explain how I tried to attack Shabal.

3.1 The mode of Operation

Shabal is a hash function based on a keyed–permutation, this permutation is an NLFSR–construction1.
The compression functions of Shabal operates on 512–bit message blocks and a counter that
states which block is inserted this round. The message is padded with a 1–bit followed by as
many 0–bits such that the length of the message is an integral multiple of 512–bits. The internal
state of Shabal consists of three arrays A, B and C of length 384–, 512– and 512–bits respectively.
The message blocks are inserted in the message rounds, and when all message blocks are in-
serted three final rounds follow. Each round consists of applying the compression function. The
final rounds are similar to the message rounds, but instead of a new message block, the last
block is inserted and the counter w is fixed to the total number of message blocks.
The length of the digest is l words, the digest is given by the last l 32–bit words of C. In this
chapter we will use word to refer to a 32–bit sequence unless stated otherwise.

1NLFSR means Non–Linear–Feedback–Shift–Register

22

Cryptanalysis of Hash Functions

3.1.1 The Compression function R

Figure 3.1: Compression function of Shabal

• A is XOR–ed with the message block counter w

• the message block mw is added modulo 232 to B (wordwise)

• a permutation is applied to A and B with keys C and mw

• mw is subtracted modulo 232 from C (wordwise)

• B and C switch places

The Permutation

The permutation consists of three steps.
In the first step only B is modified, in the second step A and B are synchronically modified and
in the last step only A is modified.
Here + is addition modulo 232, ⊕ is the XOR operator, U is multiplication by 3 modulo 232, V
is multiplication by 5 modulo 232, ∧ is the bitwise AND operator,≪n is rotation to the left by
n bits and a is the bitwise negation of a.
The three steps of the permutation are:

1. The words of B are left–rotated over 17 bits, i.e. B = B≪17.

2. The functions in this step are applied wordwise. The words of B are updated thrice, thus
each word of A is updated four times. We have:

for i = 0 to 2 do
for j = 0 to 15 do

A[j + 16i mod 12]←U (A[j + 16i mod 12]⊕ V(A[j− 1 + 16i mod 12]≪15)
⊕C[8− j mod 16])
⊕B[j + 13 mod 16]
⊕(B[j + 9 mod 16] ∧ B[j + 6 mod 16])
⊕M[j]

B[j]← (B[j]≪1)⊕ A[j + 16i mod 12]
end for

end for.

3. In the last step each word of A is updated three times,
for j = 0, . . . , 35 do A[j mod 12]← A[j mod 12] + C[j + 3 mod 16]

Nieke Aerts 23

Chapter 3: Shabal

The initial Values

Shabal–256
A: 52F84552 E54B7999 2D8EE3EC B9645191 E0078B86 BB7C44C9 D2B5C1CA B0D2EB8C

14CE5A45 22AF50DC EFFDBC6B EB21B74A
B: B555C6EE 3E710596 A72A652F 9301515F DA28C1FA 696FD868 9CB6BF72 0AFE4002

A6E03615 5138C1D4 BE216306 B38B8890 3EA8B96B 3299ACE4 30924DD4 55CB34A5
C: B405F031 C4233EBA B3733979 C0DD9D55 C51C28AE A327B8E1 56C56167 ED614433

88B59D60 60E2CEBA 758B4B8B 83E82A7F BC968828 E6E00BF7 BA839E55 9B491C60

Shabal–512
A: 20728DFD 46C0BD53 E782B699 55304632 71B4EF90 0EA9E82C DBB930F1 FAD06B8B

BE0CAE40 8BD14410 76D2ADAC 28ACAB7F
B: C1099CB7 07B385F3 E7442C26 CC8AD640 EB6F56C7 1EA81AA9 73B9D314 1DE85D08

48910A5A 893B22DB C5A0DF44 BBC4324E 72D2F240 75941D99 6D8BDE82 A1A7502B
C: D9BF68D1 58BAD750 56028CB2 8134F359 B5D469D8 941A8CC2 418B2A6E 04052780

7F07D787 5194358F 3C60D665 BE97D79A 950C3434 AED9A06D 2537DC8D 7CDB5969

3.2 Recent Analysis

3.2.1 On the permutation only

Aumasson noted the existence of a distinguisher based on a cube–tester which has a complexity
of 2300 against 2448 ideally [27]. This implies that the permutation is not pseudo–random, but
this has no effect on the security of Shabal. This attack is evaluated in Section 3.5.
Knudsen et al. describe how to find state conserving values (fixed points) A, B, C and M and
key–collisions for the permutation [28]. They choose A, B and C in both cases, and since Shabal
uses initial values which are different this is not applicable to full Shabal, this is evaluated in
Section 3.8.
Aumasson et al. described a related–key distinguisher [29], the distinguisher queries for PM,C(A, B)
and PM′ ,C′(A, B), so only values for M and C are chosen. Again this is not applicable to full
Shabal, since then C and C′ can not be chosen. They also found pseudo–collisions and pseudo–
second–preimages for a reduced version of the permutation, they reduce the number of rounds
in step 3 from 36 to 24. They prove that this method can not be applied to the full permutation.
The submitters of Shabal responded to the non–pseudo–randomness of the permutation by stat-
ing that Shabal does not need it to be pseudo–random [30]. They have rewritten the original
security proofs (based on the indifferentiability of the permutation of a random oracle) to secu-
rity proofs based on the fact that for the permutation there exists a certain, known input–output
relation. The proof is described in Section 3.4.
A rotational distinguisher for the permutation function was described by Van Assche [31]. This
again shows that the permutation can be distinguished from an ideal permutation, but it can
not be applied to the full Shabal since the initial values of Shabal are not rotational, the addition
of the block counter is not rotational and the final rounds of Shabal will decrease the rotational
probability. This distinguisher does not require less queries than the previous distinguishers.
In addition Van Assche showed that a reduced version of Shabal’s mode of operation can be
distinguished from a random oracle. The reduced version uses different IV’s, no final rounds
and no block counter. This implies that the security of Shabal relies on the non–symmetric IV’s,
the counter and the final rounds. This attack is evaluated in Section 3.12.

24

Cryptanalysis of Hash Functions

Novotney introduces a distinguisher based on differential analysis which has complexity 223 [32].
This can not be applied to full Shabal because of the initial values and the final rounds.

3.2.2 On the compression function R

Aumasson shared an observation on the compression function [33], which is a pseudo–near–
collision. For chosen A, B, C, m and M′ we have

R(A, B, C, m) = (A′, C−M, M)

and
R(A, B, C, m′) = (A′, C−M′, M′).

Here C − M and C − M′ differ only on 1 bit in each word (so 16 differences). Here only the
message blocks contain a difference, but again, it can not be used for full Shabal since A, B and
C are chosen.

3.2.3 On full Shabal

The first results (except for the submission document) on full Shabal were published by Isobe
and Shirai [17].
They first describe a near–collision attack on the compression function backwardly, and then use
this to describe a pseudo–collision attack. They start with (A, B, C) and (A′, B′, C′) which differ
in 45 bits, apply the compression function to those internal states and M and M′ respectively to
end with a collision with probability 2−184.
Secondly they describe an attack on two reduced versions of Shabal, first where step 2 of the
permutation is only repeated twice and then on the reduction where A has length 256–bits and
step 2 of the permutation is repeated only 1.5 times. For these attacks they use the Guess–and–
Determine technique.
The Guess–and–Determine technique (GD) consists of three steps, first, obtain equations for
relations between the message block and the internal state. The guess part of the message block.
In step three we use this to determine the rest of the message block using the equations of step
one.
For the first variant Isobe and Shirai find complexity 2497 (with 2400 memory) and for the second
variant they find complexity 2497 (with 2272 memory). Again this has no consequences for the
security of Shabal. This attack is evaluated in Section 3.11.

3.3 Indifferentiability

In the submission document of Shabal [25] it is claimed that the mode of operation of Shabal is
indifferentiable from a random oracle up to 2(la+lm)/2 queries, where la is the length in bits of A
and lm is the length in bits of B and C. The proof is based on the ideal cipher model, which was
showed not to be correct. The second proof [30] uses a biased inner primitive for which two
values play a special role, the forward bias τ and the backward bias λ of the relation that holds
(with high probability) for the inner primitive.

Nieke Aerts 25

Chapter 3: Shabal

First we will discuss the original proof, followed by the proof including the biased permutation.
Then we will address a third proof [34].

3.3.1 The original proof of Indifferentiability

The first proof was given in the submission document of Shabal, this proof does not take the
inverse of the permutation into account, but this is improved in the second proof.
The authors of Shabal claim that for a distinguisher with respect to the mode of operation of
Shabal after at most N calls

ADV(D, C) ≤ N(2N − 1) · 2−la−lm

holds. Recall that la, lm represents the bit length of A respectively B.

Definitions

M the message, element of {0, 1}∗.

m one block of the message, element of {0, 1}512.

(A, B, C, m) element of
{(
{0, 1}384, {0, 1}512, {0, 1}512, {0, 1}512)}.

Insert applies all the operations except for the permutation to a tuple:
Insert[mi, i](A, B, C, m) = (A⊕ i, C−m + mi, B, mi).

x a tuple (A, B, C, m) before Insert is applied.

y a tuple (A, B, C, m) after Insert is applied, i.e. Insert[m](x) = y.

X is the set of all x.

Y is the set of all y.

x0 the initial value (A, B, C, m), where m is the all zero sequence.

h element of {0, 1}512.

P is the permutation (input (A, B, C, m); output (A′, B′)).

CP represents the mode of operation (initialization, message rounds and final rounds; input
M; output h).

H is a random oracle, which outputs a 512–bit value.

S is a simulator for P (input (A, B, C, m); output (A′, B′)).

I is a simulator of CP (input: m; output h).

G is the graph that the simulator keeps up to date during the game, the graph contains
vertices x and y, edges starting in y ending in x representing a permutation step.

path is a path in G, given by the vertices
y1 = Insert[m1](x0), x1, y2 = Insert[m2](x1), . . . , yk = Insert[mk](xk−1), xk for some mes-
sage block M = m1||m2|| . . . ||mk.

We will also view the operations of the compression function in a different order (see Figure 3.2),
in intermediate states this makes no difference from the original order. For the first and last step

26

Cryptanalysis of Hash Functions

it does differ, but if we modify the start and end procedure of the original version as follows,
the two views collide. We use

• modified start values (B and C are swapped)

• zero for the first message block (m in Figure 3.2)

• the output B instead of C.

Figure 3.2: Different view on the compression function of Shabal

The proof is game based, between every two games the advantage of the distinguisher is given
by the difference of the probability that the distinguisher outputs a one in the two games. The
first game is the original game and in the last game the system is a random oracle. Wi represents
the event of a 1 output in game i. The advantage of the distinguisher can then be bounded from
above by:

|Pr [W0]− Pr [W9]| ≤
9

∑
i=1
|Pr [Wi−1]− Pr [Wi]| .

The idea is to make a simulator S for the (assumed to be random) permutation P . The simulator
keeps track of all the previous queries in a graph. In the graph there is a difference between
queries directly from the distinguisher GD and queries from the cryptographic construction GC .

Figure 3.3: Graphical representation of the games

Nieke Aerts 27

Chapter 3: Shabal

Game 0 This is the original game, D interacts with P and CP which represents a random
keyed permutation respectively the compression function. The compression function executes
for every message block the following two subroutines:

(A, B, C, m) = Insert[mi, i](A, B, C, m)

(A, B) = P(A, B, C, m)

where
Insert[mi, i](A, B, C, m) = (A⊕ i, C−m + mi, B, mi). (3.1)

And afterwards the final rounds (which are defined to apply the two subroutines using the last
message block and the number of message blocks as counter i).

Game 1 P is replaced by the simulator S , which forwards calls to P and returns the responses.
S constructs the graph G = GC ∪ GD throughout the game. D can see no difference between the
two games, thus Pr[W1] = Pr[W0]. The simulator is given by:

Initialisation of S in Game 1
No input, no output

1. set G = ∅
Simulation of P
Input: y = (A, B, C, m), origin O
Output: (A′, B′)

1. add node y to GO
2. call P to get (A′, B′) = P(A, B, C, m)
3. add node x = (A′, B′, C, m) and edge y→ x to GO
4. return (A′, B′) to O

Game 2 In this game S no longer queries P , but selects a response randomly. The authors
state that under the assumption that P is an ideal random permutation, this does not change
the distribution. So Pr[W1] = Pr[W2].

In my opinion, this is not true. As P is a permutation and thus injective, we find

Pr[Pm,c(A, B) = Pm′ ,c′(A′, B′)|(A, B) 6= (A′, B′)] = 0

and for a random selection this is 2−896, which is small, but not zero. And for the qth query this gives
probability at most (q− 1)2−896. So

|Pr[W2]− Pr[W1]| ≤ (q− 1)2−896.

A solution would be to randomly choose another value every time a colliding value is selected, then
Pr[W1] = Pr[W2] would hold. This would (slightly) increase the time between a query and a response for
S , so a side channel attack might be possible. Another option is to remove this game, and go from game 1
to game 3, nothing in the evaluation of |Pr[W3]− Pr[W1]| will be different of the analysis between game
2 and 3 as we will see later.

Game 3 We define two events for which the simulator will abort, these events protect the
simulator from giving outputs that the permutation would never give. The simulator has to

28

Cryptanalysis of Hash Functions

check whether the value it selects gives a collision in the future, it aborts if one of the following
events is true for unequal x 6= x̃:

Coll0 x and x̃ admit a path of k consecutive evaluations of the subroutines of the compression
function in the graph G = GC ∪ GD and there exists a y such that y = Insert[mk, k](x) =
Insert[m̃k, k](x̃). In words, after digesting two sequences of k + 1 message blocks the same
internal state is reached, this is an internal collision. If after this (at least once) only equal
message blocks are digested to both evaluations, the hash outputs will collide,

Coll1 x and x̃ both admit a path of the subroutines of the compression function and all but one
of the final rounds, in the graph G = GC ∪ GD and there exists a y such that applying the
last final round to x and x̃ would result in y. In words, after digesting two sequences of
message blocks and the final rounds the same state is reached, so the hash outputs are
colliding.

Figure 3.4: A graphical representation of colliding paths in the graph.

Note that in the latter case we must have that the last message blocks are equal, as the state y
contains the last message block too. The first thought one might have is that (A, B, C, m) and
(A′, B, C′, m′) would give a collision but the abort events return false. But this happens with the
same probability in game 3 as in the original game under the assumption that P is ideal, so we
can ignore this case while estimating the difference in the probabilities between the two games.
The new simulator is given by:

Initialisation of S in Game 3
No input, no output

1. set G = ∅
Simulation of P
Input: y = (A, B, C, m), origin O
Output: (A′, B′)

1. add node y to GO
2. if there exists y→ x ∈ GO

(a) return (A′, B′) where x = (A′, B′, C, m)
(b) add node x to GO

3. randomly select A′ ← {0, 1}la and B′ ← {0, 1}lm

4. add node x = (A′, B′, C, m) and edge y→ x to GO
5. if ∃x̃ ∈ GO such that abort1 then abort
6. return (A′, B′) to O.

Nieke Aerts 29

Chapter 3: Shabal

The simulator S now aborts if it selects a response x for which there exists an x̃ such that one of
the events Coll0 or Coll1 happens, we name this abort1. In this game, each state in the graph
G admits at most one path, since a second path would have caused the simulator to abort.
When the events described above are not true, the probability that the distinguisher outputs a
one in game 3 is equal to the probability that the distinguisher outputs a one in game 2, so we
can use the difference lemma.

Lemma 2. Difference Lemma.
Let U, V, E be three events such that

Pr[U ∧ ¬E] = Pr[V ∧ ¬E],

then
|Pr[U]− Pr[V]| ≤ Pr[E].

Proof.

|Pr[U]− Pr[V]| = |Pr[U ∧ E] + Pr[U ∧ ¬E]− Pr[V ∧ E]− Pr[V ∧ ¬E]|
= |Pr[U ∧ E]− Pr[V ∧ E]| ≤ Pr[E]

So we have
|Pr[W3]− Pr[W2]| ≤ Pr[abort1].

An upper bound for Pr[abort1] is an upper bound for the advantage of the distinguisher in
game 3 compared to game 2.
Let us estimate Pr[abort1] using:

Pr[abort1] = Pr[Coll0∨Coll1]
≤ Pr[Coll0] + Pr[Coll1].

When the qth query is requested to S , there are at most q − 1 states x̃ in graph G. As every
(A, B) part of the states has been chosen randomly we can bound Pr[Coll0] at the qth query as
follows:

Pr[Coll0] ≤ (q− 1)Pr[∃m′ : Insert[m′, k](A, B, C, m) = Insert[m′, k](Ã, B̃, C̃, m̃)]
= (q− 1)Pr[A = Ã ∧ B = B̃ ∧ C−m = C̃− m̃]

= (q− 1)2−la 2−lm Pr[C−m = C̃− m̃]

≤ (q− 1)2−la 2−lm .

And the bound for Pr[Coll1] is given by

Pr[Coll1] ≤ (q− 1)Pr[Insert[mi, i](A, B, C, m) = Insert[mj, j](Ã, B̃, C̃, m̃)]

= (q− 1)Pr[A = Ã ∧ B = B̃ ∧ C = C̃ ∧mi = mj]

= (q− 1)2−la 2−lm Pr[C = C̃ ∧mi = mj]

≤ (q− 1)2−la 2−lm .

Therefore Pr[abort1(q)] ≤ 2(q− 1)2−la 2−lm . As we are allowing only N calls, we have:

Pr[abort1] ≤
N

∑
q=1

Pr[abort1(q)].

30

Cryptanalysis of Hash Functions

And so
|Pr[W3]− Pr[W2]| ≤ Pr[abort1] ≤ N(N − 1)2−la−lm .

In the case that game 2 does not exist, so we want to estimate |Pr[W3]− Pr[W1]|, we find that again

|Pr[W3 ∧ ¬abort1] = Pr[W1 ∧ ¬abort1]|,

and thus
|Pr[W3]− Pr[W1]| ≤ Pr[abort1].

So in order to minimize the upper bound for the advantage of the distinguisher it is better to remove game
2 and go from game 1 directly to game 3

Game 4 Now we define two events which make sure that an input y either has a path on the
moment it is added to the graph or if it does not have a path when it is added, it will never get
one. We do this to catch the situation that an attacker correctly guesses an intermediate state of
a path, since in this case, the attacker could find the hash of a message without querying the
whole message (see Figure 3.5).

Figure 3.5: When adding x to the graph which would give ỹ a path the simulator aborts.

The simulator now checks if the image x it selected, is a dependency for some ỹ already in the
graph, it aborts if one of the following events is true for this x and ỹ ∈ G:

Dep0 There is a path of k compression steps from x to ỹ in G; i.e. ỹ has been queried before, and
now we would introduce a path for ỹ.

Dep1 There is a path of k compression steps and one or more final rounds from x to ỹ; i.e. ỹ has
been queried before, and now we would introduce a path for ỹ.

The simulator S now aborts if it selects a response x for which there exists an ỹ such that one
of the events Dep0 or Dep1 happens, we name this abort2. The new simulator is given by:

Nieke Aerts 31

Chapter 3: Shabal

Initialisation of S in Game 4
No input, no output

1. set G = ∅
Simulation of P
Input: y = (A, B, C, m), origin O
Output: (A′, B′)

1. add node y to GO
2. if there exists y→ x ∈ GO

(a) return (A′, B′) where x = (A′, B′, C, m)
(b) add node x to GO

3. randomly select A′ ← {0, 1}la and b′ ← {0, 1}lm

4. add node x = (A′, B′, C, m) and edge y→ x to GO
5. if ∃x̃ ∈ GO such that abort1 then abort
6. if ∃ỹ ∈ GO such that abort2 then abort
7. return (A′, B′) to O.

Where O is either D or C.
We use the difference lemma again to see:

|Pr[W4]− Pr[W3]| ≤ Pr[abort2].

Let us estimate Pr[abort2] using:

Pr[abort2] = Pr[Dep0∨Dep1]
≤ Pr[Dep0] + Pr[Dep1].

When the qth query is requested to S , there are at most q − 1 states x̃ in graph G. As every
(A, B) part of the states has been chosen randomly we can bound Pr[Dep0] at the qth query as
follows:

Pr[Dep0] ≤ (q− 1)Pr[∃m′ : Insert[m′, k + 1](x) = ỹ]
= (q− 1)Pr[m′ = m̃ ∧ A⊕ (k + 1) = Ã ∧ B = C̃ ∧ C−m + m′ = B̃]
= (q− 1)2−la 2−lm Pr[C−m + m̃ = B̃]
≤ (q− 1)2−la 2−lm .

Remember that we are now only looking at the final rounds (so the message block that we insert
must be the same as the last message block) thus the bound for Pr[Dep1] is given by

Pr[Dep1] ≤ (q− 1)Pr[Insert[m, k](x) = ỹ]
= (q− 1)Pr[m = m̃ ∧ A⊕ k = Ã ∧ B = C̃ ∧ C = B̃]
= (q− 1)2−la 2−lm Pr[m = m̃ ∧ C = B̃]
≤ (q− 1)2−la 2−lm .

Therefore Pr[abort2(q)] ≤ 2(q− 1)2−la 2−lm . As there are at most N calls allowed, we have:

Pr[abort2] ≤
N

∑
q=1

Pr[abort2(q)],

and thus
|Pr[W4]− Pr[W3]| ≤ Pr[abort2 ≤ N(N − 1)2−la−lm].

32

Cryptanalysis of Hash Functions

Game 5 In game 5 the random oracle H is added to the game. H will be used to give the hash
of a complete message. Thus S wants to know whether the current request x, is the last step
of hashing a message, that is if it is the third final round. To obtain this information, S checks
whether x has a path in the graph G which contains two final rounds before ending in x. If so,
instead of selecting the B part randomly itself, S now queries the complete message M to H.
We call the function which finds the path and returns the complete message if required, unpad.
This is to make sure that, when we replace C by H, the hash obtained via the compression
function, collides with the permutation of the last block if requested to the permutation directly.
The abort rules stay intact, as both H and S return a random value for B nothing changes in
respect to the previous game and thus Pr[W5] = Pr[W4].

Game 6 In game 6 C is replaced by I . When a query M is send to I , I first queries S the
same way C would do and then completely ignores the output, queries H and outputs H(M).
We assume the permutation to be ideal, so the attacker will not see the difference between an
output of H and an output of P . And when the simulator S finds that this is the query for the
last round, it will use the function unpad to get M and query M to H. Now as H is queried M
for the second time, it will output the same value.
The distinguisher will not notice the change and thus Pr[W6] = Pr[W5].

Game 7 In this game we want to estimate the probability that a path exists in GC and not in
GD . Later I will no longer query S , then S does not know the queries previously made to H.
For example, assume an attacker is able the find the penultimate inner state without querying
the permutation and queries this to S , then S does not know it is running a last final round of
the hashing of a message, and will most probably not return the same value as H will give for
the whole message.
We use the following event to describe the situation

Guess Given the graphs GC ,GD and a node y ∈ GC ∪ GD , the event is true if and only if y admits
a path in GC ∪ GD and not this path in GD .

The simulator S now aborts if it is queried y for which the event Guess is true, we name this
event abort3. The new simulator is given by:

Nieke Aerts 33

Chapter 3: Shabal

Initialisation of S in Game 7
No input, no output

1. set G = ∅
Simulation of P
Input: y = (A, B, C, m), origin O
Output: (A′, B′)

1. add node y to GO
2. if there exists y→ x ∈ GO

(a) return (A′, B′) where x = (A′, B′, C, m)
(b) add node x to GO

3. if y has a path in graph GO
(a) compute M = unpadµ
(b) call H to get h = H(M)
(c) set B′ = h

4. else
(a) randomly select b′ ← {0, 1}lm

5. randomly select A′ ← {0, 1}la

6. add node x = (A′, B′, C, m) and edge y→ x to GO
7. if ∃x̃ ∈ GO such that abort1 then abort
8. if ∃ỹ ∈ GO such that abort2 then abort
9. return (A′, B′) to O.

We use the difference lemma again to see:

|Pr[W7]− Pr[W6]| ≤ Pr[abort3].

The authors state that Pr[abort3(y)] ≤ 2−la−lm due to the following methodology.

Figure 3.6: The two possibilities for event Guess to be true.

Assume Guess happens, then there must have been a query M to I , such that there exists a
path to y, for which the B–part is H(M) in GC . Now assume this path is not in GD , then there
must be an edge of the path, say yi → xi in GC such that either xi or yi is not a vertex of GD .
If yi ∈ GD then there must be some x∗i such that there exists an edge yi → x∗i in GD . Now
we must have that x∗i = xi since for each input a unique output is selected by S , so we have a
contradiction.
Now let yi 6∈ GD . Now suppose yi−1 ∈ GD , then the attacker knows the B value of yi−1, and
thus also the B value of yi+1 as it knows the message blocks and Bi+1 = (Bi−1 − mi) + mi+1
mod 232 as shown in Figure 3.7. Given that the distinguisher correctly guesses the values for
A and C of the state yi+1, it can then query yi+1 which would result in the event Guess. The

34

Cryptanalysis of Hash Functions

probability of guessing this correctly is 2−la−lm .

Figure 3.7: The attacker is able to find the B part of the second following state.

And thus Pr[abort3(y)] ≤ 2−la−lm .
Assuming that there have been at most N queries, we find

Pr[abort3] ≤ N2−la−lm .

Game 8 In this game I no longer queries S , but just queries H and returns the response. The
graph G of S now only consists of GD . The test for abort3 can be removed.
The distinguisher has no advantage due to this change and thus Pr[W8] = Pr[W7].

Game 9 We now remove the interface I , so the distinguisher communicates with H directly.
Again this does not change the advantage of the distinguisher, Pr[W9] = Pr[W8].
Game 9 is the final game, the distinguisher now interacts with the system (H,SH).

Summing up Summing up we find:

|Pr [W0]− Pr [W9]| = ∑9
i=1 |Pr[Wi]− Pr[Wi−1]|

= 2N(N − 1)2−la−lm + N2−la−lm

= N(2N − 1)2−la−lm .

Complexity of the Simulator S

The proof of indifferentiability does not take the complexity of the simulator into account. Via
a side channel attack, an attacker may be able to differentiate between the original system and
the simulating system, as the simulator may take longer to respond than the permutation. The
simulator in the final game is given by:

Nieke Aerts 35

Chapter 3: Shabal

Initialisation of S in the Final Game
No input, no output

1. set G = ∅
Simulation of P
Input: y = (A, B, C, m)
Output: (A′, B′)

1. add node y to GD
2. if there exists y→ x ∈ GD

(a) return (A′, B′) where x = (A′, B′, C, m)
3. if y has a path in graph GD

(a) compute M = unpadµ
(b) call H to get h = H(M)
(c) set B′ = h

4. else
(a) randomly select b′ ← {0, 1}lm

5. randomly select A′ ← {0, 1}la

6. add node x = (A′, B′, C, m) and edge y→ x to GD
7. if ∃x̃ ∈ GD such that abort1 then abort
8. if ∃ỹ ∈ GD such that abort2 then abort
9. return (A′, B′).

The complexity depends mainly on the size of the graph. Let N be the number of previous
queries. In step 2, in the worst case scenario we have to compare the new value with all N
old values. The cost of step 3, the length of the path, can be neglected as this is most of
the time much smaller than N. The complexity of step 7 and step 8 can be combined, if the
simulator checks for every message block m and for every existing node x′ ∈ G if Insert[m](x) =
Insert[m](x′), it can decide whether to abort. The worst case complexity of step 7 and 8 is n · |M|
where the latter represents the size of the message space.
The other parts are negligible compared to the above, so the overall worst case complexity of
the simulator is of order

n + n · |M| = O(n · |M|).

If the message space is large, already for the second query the time needed to respond for the
simulator may differ significantly from the time the permutation needs.

3.4 Indifferentiability with a biased permutation

After the non–randomness of the permutation of Shabal was exposed, the authors of Shabal
responded with a proof of indifferentiability of Shabal with a biased permutation [30]. The
proof is based on the original proof and uses the same games, but the simulator for S now uses
the relation that is known for the permutation. There is one more difference, the inverse of the
permutation is also considered, this was a flaw in the first proof which is now corrected.

Forward Bias (τ) Let R be an input–output relation for the permutation. Given A, B, B′, C and
m, let permR,m,A,B,C,B′ be the set of permutations P for whichR holds and Pm,C(A, B)→ (A′, B′)
for some A′. Assume that there exists an algorithm which, given A, B, C, B′ and m selects
randomly a permutation P from permR,m,A,B,C,B′ . Then the forward bias τ is defined to be the

36

Cryptanalysis of Hash Functions

smallest real such that given A, A′, B, C, m we have

Pr
[

B′ ∈ {0, 1}512 : Pm,C(A, B) = (A′, B′)
]
≤ 2−384+τ .

For example, if the relationR is such that all tuples (A, B, C, m) are mapped to (A∗, B′) for some
fixed A∗ and B′ completely random. Then we choose A′ to be A∗ to find a bias of 384:

Pr
[

B′ ∈ {0, 1}512 : Pm,C(A, B) = (A∗, B′)
]
= 1 ≤ 2−384+384.

Backward Bias (λ) Now let permR the set of all permutations that satisfy the relation R.
Assume that there exists an algorithm which, given A′, B′, C, m, selects randomly a permutation
P from permR and returns A, B such that Pm,C(A, B) = (A′, B′). Then the backward bias λ is
defined to be the smallest real such that

Pr
[
Pm,C(A, B) = (A′, B′)

]
≤ 2−384−512+λ.

If we take the same relation as above, then if we select B′, C and m randomly, and let (A∗, B′) be
the image, we would find a backward bias λ = 384:

Pr
[
Pm,C(A, B) = (A∗, B′)

]
= 2−512 ≤ 2−384−512+λ.

In this example we know that A∗ will be the image, so we only need B′ to be the other part,
which would happen with probability 2−512 since the B part of the permutations is random.

Indifferentiability Proof with a biased inner primitive (I) The submitters of Shabal use the
original proof, taken away the final rounds and the counter [30]. So instead of Equation 3.1 we
now use

Insert[mi](A, B, C, m) = (mi, A, C−m + mi, B). (3.2)

We assume that the permutation satisfies a relation R, thus has forward bias, τ, and there exists
an implementation J which generates a′ given A, B, B′, C, m such that for some permutation P
for which R holds, (A′, B′) = Pm,C(A, B, C, m).
Before the simulator selected a value for A′ randomly, it now uses the implementation J to
select A′. So the proof is rewritten by slightly changing the simulator and therefore the abort
probabilities have to be estimated again.
The first change is for the simulator in Game 3. Recall that the simulator used to select A′

randomly if the requested value is not yet in its graph, and test for a collision afterwards. The
simulator is given by:

Nieke Aerts 37

Chapter 3: Shabal

Initialisation of S in the Final Game
No input, no output

1. set G = ∅
Simulation of P
Input: y = (A, B, C, m)
Output: (A′, B′)

1. add node y to GD
2. if there exists y→ x ∈ GD

(a) return (A′, B′) where x = (A′, B′, C, m)
3. if y has a path in graph GD

(a) compute M = unpadµ
(b) call H to get h = H(M)
(c) set B′ = h

4. else
(a) randomly select b′ ← {0, 1}lm

5. get A′ ← {0, 1}la from the implementation J
6. add node x = (A′, B′, C, m) and edge y→ x to GD
7. if ∃x̃ ∈ GD such that abort1 then abort
8. if ∃ỹ ∈ GD such that abort2 then abort
9. return (A′, B′)

We want to estimate Pr[abort1] for the new simulator. As we no longer take the final rounds
into account, the simulator aborts only when event Coll0 evaluates true.
When the qth query is requested to S , there are at most q− 1 states x̃ in graph G. Using that the
permutation is biased, we can bound Pr[Coll0} at the qth query as follows (recall that we are no
longer taking the counter into account either):

Pr[Coll0] ≤ (q− 1)Pr[∃m′ : Insert[m′](A, B, C, m) = Insert[m′](Ã, B̃, C̃, m̃)]
= (q− 1)Pr[A = Ã ∧ B = B̃ ∧ C−m = C̃− m̃]
≤ (q− 1)Pr[A = Ã|B = B̃]Pr[B = B̃]
≤ (q− 1)2−la+τ2−lm .

Also Pr[abort2] changes. As we no longer take the final rounds into account, the simulator
aborts only when event Dep0 evaluates true.
When the qth query is requested to S , there are at most q− 1 states x̃ in graph G. Using that the
permutation is biased, we can bound Pr[Dep0] at the qth query as follows:

Pr[Dep0] ≤ (q− 1)Pr[∃m′ : Insert[m′](x) = ỹ]
= (q− 1)Pr[m′ = m̃ ∧ A = Ã ∧ B = C̃ ∧ C−m + m′ = B̃]
≤ (q− 1)Pr[A = Ã|B = C̃]Pr[B = C̃]
≤ (q− 1)2−la+τ2−lm .

The authors use the value of abort3 in their final estimation, we assume that they mean that
this is not changed compared to the previous proof. Recall that abort3 happens if there exists a
path in GC and not in GD . The final rounds nor the counter are considered as a special case and
removing them will not give the attacker any advantage, so we conclude again

Pr[abort3] ≤ N2−la−lm .

In this paper the simulator for the inverse of the permutation, P−1, is introduced. Here we
assume that there is a relation which provides a backward bias λ and there exists an implemen-

38

Cryptanalysis of Hash Functions

tation K such that given (A′, B′, C′, m), selects a permutation P for which the relation holds, and
returns (A, B) for which Pm,C(A, B) = (A′, B′). The simulator is given by:

Initialisation of S in the Final Game
No input, no output

1. set G = ∅
Simulation of P
Input: y = (A, B, C, m)
Output: (A′, B′)

1. add node y to GD
2. if there exists y→ x ∈ GD

(a) return (A′, B′) where x = (A′, B′, C, m)
3. if y has a path in graph GD

(a) compute M = unpadµ
(b) call H to get h = H(M)
(c) set B′ = h

4. else
(a) randomly select b′ ← {0, 1}lm

5. get A′ ← {0, 1}la from the implementation J
6. add node x = (A′, B′, C, m) and edge y→ x to GD
7. if ∃x̃ ∈ GD such that abort1 then abort
8. if ∃ỹ ∈ GD such that abort2 then abort
9. return (A′, B′)

Simulation of P−1

Input: x = (A′, B′, C, m)
Output: (A, B)

1. add node x to GD
2. if there exists y→ x ∈ GD

(a) return (A, B) where y = (A, B, C, m)
3. else, get (A, B) from the implementation K
4. add node x = (A, B, C, m) and edge y→ x to GD
5. if ∃x̃ 6= x ∈ GD such that y→ x̃ ∈ GD then abort (abort4)
6. if ∃x̃ ∈ GD such that Insert[m](x̃) = y for some m ∈ {0, 1}lm then abort (abort5)
7. return (A, B)

There are two abort events defined in the simulator for P−1. The first event, abort5, prevents
the simulator from choosing an output y that is already the preimage of another input x̃, i.e. an
output that has two preimages, and this would imply that P maps y to two different states. The
second event, abort5, prevents the simulator for P−1 from outputting an intermediate value y
for a path from x̃ to x, i.e. from outputting y for which there exists a message block m such that
x = P(Insert[m](x̃)).
We estimate the probabilities for the two events similarly to the other abort events.
For event abort4 to be true for x and y, we need that there exists an x̃ such that both of them
will be mapped to y by the permutation simulator. As the simulator for P will never map to
elements to the same point, the only possibility is x = x̃, so the implementation K selects a y
that is already in the graph. Recall that q is the number of this query. We now have

Pr[abort4(q)] ≤ (q− 1)Pr[y = ỹ]
= (q− 1)Pr[A = Ã ∧ B = B̃ ∧ C = C̃ ∧m = m̃]
≤ (q− 1)Pr[(A, B) = (Ã, B̃)]
≤ (q− 1)2−la+τ2−lm .

Nieke Aerts 39

Chapter 3: Shabal

Event abort5 to be true for x and y, we need that there exists there exists a message block m
such that x = P(Insert[m](x̃)). We find

Pr[abort5(q)] ≤ (q− 1)Pr[∃m∗ : Insert[m∗](x̃) = y]
= (q− 1)Pr[∃m : Ã = A ∧ C̃− m̃ + m∗ ∧ B̃ = C ∧m∗ = m]
≤ (q− 1)Pr[(A, B) = (Ã, C̃− m̃ + m∗)]
≤ (q− 1)2−la−lm+λ.

Summing up The advantage of the attacker at the qth query is the sum of the above:

Advq(D, C) ≤ 3(q− 1)2−la−lm+τ + (q− 1)2−la−lm+λ + 2−la−lm

= (q− 1)2−la−lm(3 · 2τ + 2λ) + 2−la−lm .

And for at most N queries this gives:

Adv(D, C) ≤ ∑N
q=1

{
3(q− 1)2−la−lm+τ + (q− 1)2−la−lm+λ + 2−la−lm

}
= 3

2 N(N − 1)2−la−lm+τ + 1
2 N(N − 1)2−la−lm+λ + N2−la−lm

= 1
2 N(N − 1)2−la−lm(3 · 2τ + 2λ) + N2−la−lm .

The submitters of Shabal stated that if one could find a relation with backward bias λ > 384 and
thus larger than the forward bias, this distinguishing relation can be used to break Shabal [30].
The example given before does not satisfy this. A simple permutation that does satisfy λ > 384
is the identity function, the backward bias λ = 896 and the forward bias would be zero in this
case. This is trivial since the set of permutations P which satisfy the relation Pm,C(A, B) = (A, B)
contains only the identity function, so when computing the backward bias this permutation is
chosen with probability 1.

The forward bias is defined to be a bias for sampling A′, so the forward bias is a real be-
tween 0 and the length of A. But as B is larger than A, it seems logical to also define a forward
bias for B′. Let us call this the B–forward bias β. Now β is defined between 0 and the length of
B, 512. The new proof of Shabal’s security, based on the biased permutation, states that as long
as the forward bias is smaller than 384 the mode of operation of Shabal remains ideal [30]. But
let us now redo that proof with a B–forward bias (Note that we use the notations of the most
recent publication [30], not the notations of earlier versions).

p1(x̃, y) = Pr
[
A′ = Ã ∧ B′ = B̃

]
= Pr

[
A′ = Ã

]
Pr
[
B′ = B̃|A′ = Ã

]
= 2−la−lm+β.

The same way we can do this for p2 and p4, so in the end we will find

Adv(D,R) ≤ 3N(N − 1)
2

2−la−lm+β +
N(N − 1)

2
2−la−lm+β + N2−la−lm .

Now if β > τ > 0 then N22−la−lm+β dominates the adversary’s advantage. If β = lm we find the
limit of O(2la/2) adversarial observations, less than ideal.

The reason that a B–forward bias is not taken into account, is that a bias in B is leading to
a much bigger problem, as B contains the hash output. For example a bias in B will be useful to

40

Cryptanalysis of Hash Functions

find preimages, as the values that not satisfy the bias will easily be excluded and therefore the
search space becomes smaller.

Indifferentiability Proof with a biased inner primitive (II) A second paper describes biased
inner primitives in indifferentiability proofs in a more general way [34]. The new proof for
Shabal gives a tighter upper bound for the advantage of the attacker, due to the different han-
dling of the forward bias. As previously explained, non uniform behavior in B will be of more
concern than non uniform behavior in A.
The new methodology is defined when the inner primitive is a compression function and when
it is a permutation, but we will only take the situation with a permutation into account.
Recall that with x we mean a state before message insertion and y is a state after message inser-
tion.

First we will introduce some new notations and then we will combine this with the previously
described forward bias to find a tighter bound on the indifferentiability of Shabal. First we will
describe the simulator, the advantage of the attacker can then again be computed using the
probabilities that the simulator aborts.

A biased permutation can be exposed by selecting an input for which some relation holds for the
output. If such an input–output pair can be identified before making any query to the permu-
tation, the input of the pair is called an atypical input. Other related pairs can only be identified
after some queries. In this case, we have a history of queries L and a related input–output pair,
and we call the input of the pair a relative of the set of inputs Lin of L. The simulator of the per-
mutation will abort when it is queried an atypical input or a relative of a previously requested
input.
To formally define atypical inputs and relatives we use the statistical distance. For two statistical
objects, in our case, two distributions D1 and D2, defined over a common set of events E , the
statistical distance is

||D1 − D2|| =
1
2 ∑

e∈E

∣∣∣∣ Pr
X←D1

[X = e]− Pr
X←D2

[X = e]
∣∣∣∣ .

Given a history L, as a set of input–output pairs, let perm(L) be the set of all permutations such
that for all p ∈ perm(L) the following holds:

∀(y, x) ∈ L : p(y) = x.

Thus, perm(L) is the set of all functions that satisfy the history L. Now for a given input y′, we
call the set of admissible outputs AL(y′). That is, given a history L and an input y′, all possible
outputs x′ such that there exists a p ∈ perm(L) such that p(y′) = x′.

Definition 4 (ε–relatives of a set of inputs). Let AL(y) be the set of admissible outputs, ε ∈ [0, 1] a
real and L a history of queries. We assume that there exists an algorithm which samples all admissible
outputs, given history L and an input y, and let DL,y be its distribution.
The ε–relatives of Lin are then given by

rel(Lin, ε) = {y 6∈ Lin : ||DL,y − unif|| > ε}.

where unif represents the uniform distribution.

Nieke Aerts 41

Chapter 3: Shabal

As explained above, the atypical inputs are inputs for which the output is constrained, even
without any knowledge of other input–output pairs. This is formalized in the following defini-
tion.
Definition 5 (ε–Atypical inputs). Let ε ∈ [0, 1] a given real, then the set of ε–atypical inputs is

at(ε) = rel(∅, ε).

The simulator is again making a graph of all previous queries, and will for every query check
whether a state leads to an atypical input after inserting some message. If so, the simulator will
abort. Again we assume that there exists an algorithm to test this.
A second problem arises when the outputs of two relatives of some other value, must be made
consistent with the random oracle. As the outputs will be very correlated, by the definition of
relatives, this is impossible. Thus in this situation the simulator will also abort. Formally, the
relatives of an input are defined as follows.
Definition 6 (ε–relatives of an input). Let AL(y) be the set of admissible outputs, ε ∈ [0, 1] a real
and L a history of queries.
Let y′ be an input which is not yet queried, so y′ 6∈ Lin. The set of ε–relatives of y′, R(y,Lin, ε), is the
smallest set R such that y′ ∈ r and

rel(Lin ∪ R, ε) ⊂ at(ε).

Now we are ready to define the games, which are not entirely the same as in the original proof,
so we shall briefly address all games.

Original Game In the original game the distinguisher interacts with CP and by definition we
have

Pr[W0] = Pr[DS|S = (CP ,P)].

Game 1 & 2 In Game 1, P is replaced by the simulator S which queries P . There is no
difference between this and the original game, so there is no advantage for the attacker. In
Game 2 S no longer queries P but uses the implementations J and K to get the response. The
definition of the implementations make sure that there are no inconsistencies, so there is no
advantage for the attacker in this game compared to the previous game:

Pr[W2] = Pr[W1] = Pr[W0].

Note that we have equality here, since the simulator chooses a permutation for which the history
is satisfied, this permutation will be bijective and thus will never output a value that is already
assigned to another input.

Game 3-7 In these games we are preparing for the replacement of the permutation by a ran-
dom oracle. The simulator has to abort in a case where the permutation would give an output
inconsistent with the random oracle, i.e. if the distribution is too far from the uniform distribu-
tion.
When the simulator is queried an input y, it simultaneously computes the image of y and of all

42

Cryptanalysis of Hash Functions

its ε–relatives. We indicate four events for which the new simulator aborts, while evaluating a
state ỹ. These events represent the situations in which the permutation differs from a random
oracle.

(i) If ỹ is mapped to a state that already exists in the graph, the simulator aborts. If both
the image and the vertex already exist in the graph and have a path starting in the initial
value, then there could be a collision.

(ii) The number of relatives that the simulator checks must be upper bounded by some Rmax

and the simulator will abort if it identifies more than Rmax relatives. Now we modify the
simulator such that it is consistent with a random oracle. Therefore we assume that if a
state has more relatives, the attacker is not able to identify them offline, i.e. it needs to
query the simulator to identify more relatives.

(iii) The simulator also aborts if there exist message blocks m, m′ and a state x such that for the
new output x̃ we have

Insert[m′](x̃) ∈ rel(Insert[m](x),Lin, ε)

and both x and x̃ have a path from the initial value in the graph. In this case, we would
have two relatives of a certain state in the graph, which both have a path.

(iv) If ỹ is mapped to a state that can be transformed to an atypical input by inserting a
particular message block, the simulator also aborts.

The simulator now uses the implementations J and K where it used to select A and B randomly.
The abort rules that we use are (i), (ii), (iii) and (iv).

Nieke Aerts 43

Chapter 3: Shabal

Initialisation of S
No input, no output

1. choose ε ∈ [0, 1]
2. set G = ({x0}, ∅)

Simulation of P
Input: y = (A, B, C, m)
Output: (A′, B′)

1. if there exists y→ x ∈ G
(a) return (A′, B′) where x = (A′, B′, C, m)

2. if |R(y, ε)| > Rmax then abort (ii).
3. if ∃y∗ ∈ |R(y, ε) that has a pathµ in graph G

(a) compute M = unpad(µ)
(b) get B′ ← {0, 1}la from the implementation K
(c) get A′ ← {0, 1}la from the implementation J
(d) set x = (A′, B′, c∗, m∗)
(e) if x ∈ G then abort (i).
(f) if ∃x′ ∈ G which has a path and such that x is a relative of

x′ then abort (iii).
(i) if ∃m such that Insert[m](x) ∈ at(ε) then abort (iv).
(j) add nodes x = (A′, B′, C, m), y and edge y→ x to G

5. for all ỹ ∈ R(y, ε)\{x}
(a) get B̃′ ← {0, 1}lm from the implementation K
(b) get Ã′ ← {0, 1}la from the implementation J
(c) set x̃ = (Ã′, B̃′, C̃, m̃)
(d) add node x̃ = (A′, B′, C, m), ỹ and edge y→ x to G

6. return (A′, B′)

The event (i) is related to the events previously defined abort1 and abort2, the other events are
based on the concept of relatives. We use the difference lemma to see that the advantage of the
distinguisher between game 7 and game 1 is smaller than or equal to the probability that the
simulator aborts in game 7:

|Pr[W7]− Pr[W1]| ≤ Pr[abort(i)] + Pr[abort(ii)] + Pr[abort(iii)] + Pr[abort(iv)].

The bounds for these probabilities are given in the third paper of the authors of Shabal [34]. We
have not been able to reconstruct these bounds and the full version of the paper has not been issued yet.
Therefore we will try to explain the part we do understand.

Pr[abort(i)] ≤ 2−(la−τ(ε))
(

2−lm + 4ε
)

Rmax N2

The term 2−la−lm+τ(ε) represents the probability that the A and the B part are equal to a state that is
already in the graph. There are at most NRmax states in the graph, for each query (total is N) we add
at most Rmax neighbors of the input and their outputs, plus the input and the output itself. Assuming
that the last two are included in Rmax we can see that for the input we check NRmax states for equality
and for the output we check N. This results in N2Rmax. Understandably we do not compare the outputs
with the ε–relatives, since ε–relatives are only defined (and useful) for the inputs. But there are already
NRmax outputs in the graph and these should be compared with the new output too in our opinion.
The term ε · 2−la+τ(ε) represents the probability that a state with the A part equal to a state in the graph,
is an ε–relative of this state. Since an ε–relative of a state has a B–part which is known with some
probability through the state.

44

Cryptanalysis of Hash Functions

Now let us look at abort(ii):

Pr[abort(ii)] ≤ maxm,y (Pr[|R(m, A, B, C, ε)| > Rmax]) N.

Note that y represents the output of the permutation.
The probability of abort(ii) is bounded by the maximum probability that there is a set of relatives
which size exceeds Rmax.
In our opinion this probability should be maximized over all inputs and all message blocks, so we would
get:

Pr[abort(ii)] ≤ maxm,x (Pr[|R(m, A, B, C, ε)| > Rmax]) N.

To bound the probability of abort(iii) we first define A.
A is the size of the maximal set of all the possible preimages of a state which is an ε–relative of
some state in the graph (of the simulator). Formally,

A = max
y∈X ,c∈{0,1}lm

|{(a′, b′) : Insert−1[m̃](x̃) = (a′, b′, c), ((̃m), (̃x)) ∈ R(m, Insert[m](y))}|,

now the probability is given by

Pr[abort(iii)] ≤ A2−(la−τ(ε))(2−lm + 4ε)N(N+1)
2 .

The simulator aborts when it has to add a state for which there exists a message block under
which it is mapped to a set of relatives for which we can find another state which is mapped to
this set under a certain message block.

Figure 3.8: Graphical presentation of abort(iii)

We have to check at most A preimages, since this is the size of the biggest set of preimages for a certain set
of relatives. Secondly we could either have equality or an ε–relative, we assume these probabilities give
the factor 2−(la−τ(ε))(2−lm + 4ε).
The last factor is N(N+1)

2 = ∑N
i=1 i, so for the second query we only check one set of relatives, for the third

query we check three and for the fourth we check six.
The reasoning behind this is not clear to us and we would expect to see something related to the number
of message blocks that the simulator needs to check.

To bound the probability of abort(iv) we first define B.
B is the size of the maximal set of preimages, such that the image is an atypical value. Formally,

B = max
c
|{(a, b) : Insert−1[m̃](Ã, B̃, C̃) = (a, b, c), (m̃, Ã, B̃, C̃) ∈ at(ε)}.

Nieke Aerts 45

Chapter 3: Shabal

Figure 3.9: Graphical presentation of abort(iv)

And the probability is then given by

Pr[abort(iv)] ≤ B2−(la−τ(ε))(2−lm + 4ε)N.

We have to check at most B preimages, since this is the size of the biggest set of preimages for which the
image is a atypical input. Secondly we could either have equality or an ε–relative, we again assume these
probabilities give the factor 2−(la−τ(ε))(2−lm + 4ε).
The last factor is N, that is the number of previous queries, why this factor is added is not clear, as the set
of atypical inputs does not depend on previous queries.

Game 8 Game 8 is similar to Game 5 in the original proof, here we add the random oracle H.
The simulator will query H for the B part of the output if the input has a relative which has a
path in the graph. Given that none of the previous abort events occur, the distance between the
distribution of the sampling algorithm and the distribution of H will be smaller than ε. After N
queries the difference between the uniform distribution of H and the sampling algorithm is at
most Nε:

|Pr[W8]− Pr[W7]| ≤ Nε.

Game 9 & 10 In the final game, the simulator does not have access to the hash requests issued
by the distinguisher, therefore it does not know whether the input is already queried to H. We
define abort(v) such that the simulator would abort if H has already assigned a value to the
input.
Bresson et. al. describe this as “when S notices that it has to use the part of its memory that
was build to answer hash requests”.
And they state:

|Pr[W10]− Pr[W8]| ≤ abort(v).

And:

abort(v) = N22−(la−τ(ε))
(

2−lh(1− ε)−1 + 2−lh pC(1 + exp) + pCε
)
+ N2−(la−τ(ε)−1)lh pC

where n f represents the number of final rounds, lh is the length of the hash output and

pC =

{
maxm,c,c′ Pr(a,b)←{0,1}la+l+m [InsertC[m](a, b, c) = c′] if n f ≥ 1
1 if n f = 0.

46

Cryptanalysis of Hash Functions

Game 11 & 12 Now we actually remove the access of the simulator to the hash requests to H,
but since we already defined abort(v) there is no change:

Pr[W12] = Pr[W10].

Initialisation of S
No input, no output

1. choose ε ∈ [0, 1]
2. set G = ({x0}, ∅)

Simulation of P
Input: y = (A, B, C, m)
Output: (A′, B′)

1. if there exists y→ x ∈ G
(a) return (A′, B′) where x = (A′, B′, C, m)

2. if |R(y, ε)| > Rmax then abort (ii).
3. if ∃y∗ ∈ |R(y, ε) that has a pathµ in graph G

(a) compute M = unpad(µ)
(b) call H to get h = H(M)
(c) set B′ = h
(d) get A′ ← {0, 1}la from the implementation J
(e) set x = (A′, B′, c∗, m∗)
(f) if x ∈ G then abort (i).
(h) if ∃x′ ∈ G which has a path and such that x is a relative of x′ then abort (iii).
(i) if ∃m such that Insert[m](x) ∈ at(ε) then abort (iv).
(j) add nodes x = (A′, B′, C, m), y and edge y→ x to G

5. for all ỹ ∈ R(y, ε)\{x}
(a) get B̃′ ← {0, 1}lm from the implementation K
(b) get Ã′ ← {0, 1}la from the implementation J
(c) set x̃ = (Ã′, B̃′, C̃, m̃)
(d) add node x̃ = (A′, B′, C, m), ỹ and edge y→ x to G

6. return (A′, B′)

Computing the security bound for Shabal We take ε = 0, since the sample algorithm, based
on the distinguishers defined for Shabal, is set to either a fixed value or the uniform distribution.
The forward bias is represented by τ(ε) and we find τ(0) = 96 due to the non–dependencies
for the inverse permutation given by Naya–Plasencia (only published in French) [35]. We will
shortly address Naya–Placensia’s method.
When computing the inverse permutation of a state there are three blocks of B (these are
11,14,15) which depend on at most four message blocks (these are 0,4,8,12). As a result one
can find up to three input words before computing the inverse. The number of possible preim-
ages for a given state will be only 296 in some cases. Therefore, the forward bias is 96.
We define the maximum number of relatives to be 218.
We use that A is the maximum number of states that are colliding on the C part that are the
preimage (under insert) of a certain group of relatives to compute A ≤ 2136.25.
We can compute the precise value of B, this is the number of atypical inputs which lead to
values with an equal C part, which is 2128.
The authors use that the Insert function of Shabal can be written as

InsertC[m](A, B, C) = (A2 −m1, B−m2)

Nieke Aerts 47

Chapter 3: Shabal

where A2 denotes the last l bits of A, l = |m| minus the number of output bits. In the definition
of Shabal we find that l ≤ 512 and thus

InsertC[m](A, B, C) = B−m.

Recall that K is the implementation that selects an output value for B′ given some input. Now

pC = maxu∈X ,L,m,C,C′ Pr(a,b)←{0,1}la+l+m [InsertC[m](a, b, c) = c′]
= maxm,c Prb←K(m,u,L)[B−m = C]
≤ 2−lm−τ = 2−416

Using the above we find

Pr[abort(i)] ≤ 2−800Rmax N2 ≤ 2−782N2

Pr[abort(ii)] ≤ 2−654N
Pr[abort(iii)] ≤ 2−801AN(N + 1) ≤ 2−664N(N + 1)
Pr[abort(iv)] ≤ 2−800BN ≤ 2−672N
Pr[abort(v)] ≤ 2−800(1 + 2−416(1 + exp))N2 + lh2−704N ≤ (2−800 + 2−1214)N2 + lh2−704N.

For abort(v) we have used that 1 + exp ≤ 22 and lh ≤ 512.
The authors conclude that for lh ≤ 512 Shabal is indifferentiable from a random oracle up to 2332

requests, due to the term 2−664N2.

3.4.1 Conclusion on the Indifferentiability proofs

The authors claim that the last proof [34] does not contain mistakes. The full version of this
article is not yet issued. In the small version not all steps are defined, and for this reason we are
not convinced by this proof.
The first proof was based on an assumption which was proven wrong. The second proof did not
have tight bounds, as the others claimed, but it is also based, for example, on the assumption
that there is no forward bias on the B part.
The third proof has not yet been fully explained.

3.5 Neutral Bits

Recall that the general idea of neutral bits is that the relation is invariant under alternating the
bits.
Aumasson described a cube–distinguisher attack [27]. He noted that summing over 7 cube–
variables and comparing for 6 super–poly variables, one finds 3 unchanged bits in the output of
B[5] after two internal rounds of one permutation round. The attack is described as follows:

• invert the finalization loop of PM,C

• guess M[5] . . . M[13]

• invert the last 11 loops of the third round, observe B[5]

This would give the attack a complexity of 2301, there are 232·9 = 2288 possible message words,
and 213 for summing over all cube and all super–poly variables.
But to observe B[5] after the second round of the permutation, one does not need to guess

48

Cryptanalysis of Hash Functions

any message word nor invert the complete 11 loops of the third round. Let B3[5] be the final
word and B2[5] the word after the second round of the permutation, then their relation can be
described as follows:

B3[5] = B2[5]≪1 ⊕A4[1]

where A4[1] is the first word of A after the third round, which can be found after inverting the
finalization loop.
So the complexity of this attack is 213, summing over 7 cube–variables (27) times comparing over
6 super–poly variables (26).

Important Note

Unfortunately our tests have not led to the same results. Aumasson noted that it should be
some bits of the fourth word B2[4], and not the fifth. But this result could not be reproduced by
us.

How to translate the attack of Aumasson into a bias

The attack of Aumasson can be described (simplified) as follows:

Pr

[(
∑
cube

B2[4, k]
∣∣M[i, j] = 0

)
=

(
∑
cube

B2[4, k]
∣∣M[i, j] = 1

)]
= 1.

We could transform this into a forward bias relation, suppose we have n bits of B which we
observe. First pick a super–poly variable, sum over the cube–variables with the super–poly
variable active, subtract the sum over the cube–variables minus one setting with the super–poly
variable not active. Now one knows the n specified bits of B′. So given A, B, C, m and B′:

Pr
[

A′ ∈ {0, 1}384 : PM,C(A, B) = (A′, B′)
]
= 2−512+n.

But the proof of indifferentiability for Shabal [30] does not contain a bias on B, nor a bias over a
sum.
Also, this seems not to be the optimal way to use the observation of the neutral bits. Assume
that we have a set of observation bits for which we have a set of neutral super–poly variables
over a cube, after one full permutation. This would translate into a summation bias n for each
super–poly variable as follows:

Pr

[
∑
cube
PM0,C(A, B) = ∑

cube
PM1,C(A, B)

]
≤ 2−896+n

where A, B, C are chosen randomly (or set to the IV’s of Shabal), M is chosen randomly except
for the cube variables and one of the super–poly variables, for M1 the super–poly variable is
active and for M0 inactive. Now n is the smallest real number such that the equation holds.
So now we have a B–forward bias of 3, which does not threaten any of the security claims made
by the authors of Shabal.

Nieke Aerts 49

Chapter 3: Shabal

3.6 Does Shabal differ from a random function

Gligoroski stated that the narrow–pipe candidates differ significantly from ideal random func-
tions [36]. He used the gap in the padding rule of BLAKE to show that if only messages of a
specific length are hashed, there exists a set in the image space for which all elements do not
have a preimage of the specified size. As the padding for Shabal is only “a one followed by
zeros”, this might work for Shabal too.
A message is padded with a one and a proper amount of zeros. So any message of which the
length is a multiple of the blocksize is padded with the same block.
Let us assume that we only want to hash messages of length 1536 (three blocks), so the padding
consists of one block starting with a one followed by 511 zeros.
Let this message be M1||M2||M3||M4.

Compression without truncation

If we only look at the compression function (so the final rounds and the truncation are ignored)
then the iteration would look like

R (R (R (R (AIV , BIV , CIV , M1) , M2) , M3) , M4)

Since M4 is a constant for all 1536–bit messages, we can see the last step as a function from
{0, 1}1408 → {0, 1}1408.
If we assume R is ideal we can use lemma 1 and proposition 1 of Gligoroski [36] to state that:

Pr
[
R−1(y) = ∅

]
≈ exp(−1)

But for an ideal random function S{0, 1}1536 → {0, 1}1408 we have that

Pr
[
S−1(y) = ∅

]
≈ exp(−2128)

This implies that the compression function differs from a random function, but there is no
obvious way to use this. Finding such a set is hard if not impossible. But if we have such a set,
it is possible to build a distinguisher based on this set, which can distinguish the compression
function from an ideal function with one query.
As the final rounds are identical to the last round except for the input, the above still holds.

Truncation

If we take the truncation into account, the full Shabal is a function {0, 1}1408 → {0, 1}512, so by
only restricting the last message block, we will find

Pr
[
R−1(y) = ∅

]
≈ exp(−2896).

And for an ideal random function S{0, 1}1536 → {0, 1}512 we have that

Pr
[
S−1(y) = ∅

]
≈ exp(−21024).

50

Cryptanalysis of Hash Functions

So we would expect both functions to be surjective and we may conclude that the idea of
Gligoroski indeed does not work for wide–pipe functions.
The method of Gligoroski has not yet lead to an attack, it distinguishes the function from an ideal random
function, but not in feasible time. This idea depends highly on the MD structure, of which only the last
step is considered. There does not seem to be a way to use this to attack the function and therefore it does
not threaten the security of narrow–pipe functions. So in our opinion this does not show that wide–pipe
functions are more secure than narrow–pipe functions.

3.7 Message extension Attack

The message rounds and the final rounds are so much alike, so a message extension attack on a
reduced version might be applicable, in addition the padding consists only of a 1–bit followed
by an appropriate amount of 0–bits. Let us look at a one–block message M such that the padded
message T = M||10 . . . is only one block.
Let H be Shabal deleted the counter. For H the message rounds and the final rounds are the
same as long as the message block input is the same. So applying this reduced version of Shabal
to a one–block message M and the concatenation of the padded message T with M, gives the
same internal state for H(M) at the end and for H(T||M) before the last final round. But the
output is only a small part of the internal state, l words of C, so applying another round to the
output of H(M) is not a trivial procedure (as the outputs A and B are unknown). If we consider
Shabal with a 512–bit digest, so the output is C, this might lead to a probabilistic distinguisher.
Recall that this applies to the reduced version of Shabal, the block counter will toughen this
attack.

Figure 3.10: The Message extension attack on Shabal

The message extension attack will be of no use as long as A and B are completely unknown,
since the probability to guess A and B correctly is 2−(la+lm).
After each round B and C switch places, so maybe a message extension attack with two extra
rounds is more useful than with one extra round.
But it is possible to also retrieve B, since B is the C part of the next round, and the probability
to guess A correctly is 2−la .

Nieke Aerts 51

Chapter 3: Shabal

Figure 3.11: The Message extension attack on Shabal

With probability 2−la the guess for A is correct and then Shabal can be distinguished from a
random oracle. A message extension distinguisher of complexity 2−la is now given.
Query M,T||M, T||T||M to H to obtain b1, b2 and b3. Then select a value for A at random and
query (T, A, b1, b2) to the inner primitive to obtain b4. Now compare b3 and b4, if these are
equal, output that the system is Shabal, otherwise randomly select an output.
To improve this attack, we need to find some relations for A, or for the output after one final
round given B, C and M.

3.8 The initial values

Many attacks are applicable only when the initial values can be manipulated. For example fixed
points of the permutation [28] are found for specific values of A, B, C and M. One could use a
message block of M to manipulate the value of A or C in the next round, or B for the second
next round. But for fixed points or related key attack we need A, B and C to be adjusted at the
beginning of one permutation round.
For the key collisions of Knudsen, Matusiewica and Thomsen [28], we need two tuples (A, B, C, m)
and (A, B, C′, m′). But if we use two message blocks to end in states where the C–part are C and
C′ then we will most probably also have differences in the A–part and B–part of the state.

3.8.1 Changing one of the internal variables

Starting from the initial values, with one message block (so one compression round), one of the
variables can be changed for the next round. Changing the next B will take two rounds, so we
start by looking at C and A. So assume we want to set C for the next round, where we will
apply the permutation to the message block m.

52

Cryptanalysis of Hash Functions

Changing the next C

Changing the next C can be done by choosing a message block M∗ such that B−M∗ + M is C∗

the value you want for C.
Let A0, . . . , A11, B0 . . . , B15 and C0, . . . , C15 be the initial words. We will write B0

i for the values

of B after the rotation (step 1 of the permutation), ∗j
i for the values of A and B after the j−th

inner round (of step 2 of the permutation) and AF
i for the values of A after the final round. So

the output of the permutation is (AF
i , B3

i).
Move forward through the permutation to find equations for all intermediate values expressed
in words of m.

A1
0 = f0(m∗0)

A1
1 = f1(m∗0 , m∗1)

...
A4

11 = f47(m∗1 , . . . , m∗15)

B1
0 = g0(m∗0)

B1
1 = g1(m∗0 , m∗1)

...
B3

16 = g47(m∗1 , . . . , m∗15).

As we are only looking at B we can ignore the final transformation for A. Now reduce the
equations to 16 equations for the B3

i in terms of m∗. Combine this with B3
i = C∗i − m∗i + mi to

solve m∗. The complexity to find this system is one permutation of computational complexity
and a lot of memory since the variable m will spread rapidly, i.e. each eqation will contain many
variables. The system consists of 16 equations with 16 variables, if we express the variables in
bits, we could solve the equations bitwise, starting with the least significant bit and building a
solution tree.

3.9 T–functions

Definition 7 (T–function). A function f : {0, 1}m×n → {0, 1}l×n is called a T–function if the kth

column of the output [f (x)]k−1 depends only on the first k columns of the input x.

For a function on 32–bit words, this can be seen as, the function to find bit i depends only on
the bits that are less significant than i.
T–functions can be used to build a solution graph for a set of equations.

If the permutation would contain only T–functions, the bits would not be properly mixed. In
the permutation we find several rotations, which are not T–functions. But it is possible to define
a solution graph for functions that do contain non–T–functions. A 1–bit rotation can be repre-
sented with a 1–bit shift and some replacement function for the last bit. The problem is that for
rotation over 15 bits, one could use the shift over 15 bits and some replacement function, but
the shift is 15–narrow, which makes the width of the solution tree very large.

It is not accurate to reduce the permutation by removing the rotation over 15 bits, since then one
would assume that not only A0 is rotational, but each new value of A is also rotational, which
is hardly ever true2.

2Since then A would be nine times 15–rotational, and thus 15–,30–,13–,28–,11–,26–,9–,24– and 7–rotational.

Nieke Aerts 53

Chapter 3: Shabal

3.10 Linear Cryptanalysis

In linear cryptanalysis the non-linear operations are approximated by linear operations. Shabal
has multiplication with constants (3,5) in step 2 and addition in step 3 of the permutation, and
each round addition and substraction of the message block.
The permutation of Shabal has 48 multiplications by 3, 48 multiplications by 5, 48 AND’s and 36
additions for each message block, so the probability that a message block input in the linearized
version gives the same output as in the original permutation, is(

3
4

)−(30·48+29·48+32·48+31·36)
=

(
3
4

)−(5484)
≈ 2−2276.

For an ideal random permutation on 896 bits this would be 2−896, so the linearization does not
help us in this case.
If we start with A = C = 0 then we can proceed through the first 12 multiplications by 5, the
first 12 by 3 in step 2 and the additions in step 3 of the permutation with probability 1. So we
find the probability of equality after one message round to be(

3
4

)−(30·36+29·36+32·48)
=

(
3
4

)−(3660)
≈ 2−1519.

If we would also start with B = 0 we find probability 1 for the first 9 AND operations, in total
we find (

3
4

)−(30·36+29·36+32·39)
=

(
3
4

)−(3372)
≈ 2−1400.

A second possibility to increase the probability, is to work with words of a known maximum
weight. If two words a, b are added modulo 2n and the weight of the words is smaller than k ≤ l
respectively then we find

Pr[a + b = a⊕ b] ≥
(

3
4

)l−1
.

Isobe and Shirai used this method (originally given by Lipmaa and Moriai [15]) to find a differ-
ential path for a pseudo–collision of Shabal, but they did not linearize the AND operation, but
searched over all possibilities. We will elaborate on this in the following section.

3.11 Expanding the pseudo–collision attack

The pseudo–collision attack of Isobe and Shirai [17] is based on a pseudo–near–collision attack
for the inverse compression function, R−1, of Shabal. This is a differential attack, and they use
the differential properties given by Lipmaa and Moriai [15].
They use a linear approximation for the addition, substraction and multiplications of the com-
pression function of Shabal, for these approximations Lipmaa and Moriai have given the success
probabilities, dependent on the weight of the inputs. Due to this they could use an automatic
search for a part of the path search. For the AND operation, they considered all possible outputs,
this is useful to construct a high probability differential path. After the automatic search they
used exhaustive search for the possible differences of the AND operation. With this construction
the first 32 steps of R−1 are searched automatically, the probability for the AND operation with
only a few differences is good enough. Then the last 16 steps of the path are searched manually.

54

Cryptanalysis of Hash Functions

With this technique they found a differential path for a pseudo–near–collision for R−1. The
path starts with a 1–bit difference in the message and in C and a 2–bit difference in A. Then
applies R−1 to find 15,29 and 1–bit differences in respectively A, B and C. This gives a pseudo–
near–collision with probability 2−184.
Using a two–block setting one could try to find a collision attack by using a near–collision and a
pseudo–collision (or add intermediate free–start–near–collisions; multi–block setting). For this
the result of Isobe and Shirai [17] could be used. They tried but did not succeed in finding a
satisfying path. Besides, Wang has stated that finding the first block of a multi–block setting is
the harder part, if this is found, the second part will be relatively easy [18]. So the first goal
should be to find a near–collision starting from the initial values of Shabal.

3.11.1 Finding a near–collision

Finding a near–collision is generally harder than finding a pseudo–collision. A differential path
could lead to near–collisions, but no such path is known for Shabal.
If the hash function would be continuous, one could use the Hill Climbing method, but, as we
will see in the next section, for Shabal this is not very efficient.

Hill Climbing Method

Turan and Uyan used the hill climbing method to find near–collisions for round–reduced Blake,
Fugue, Hamsi and JH [37]. The hill climbing method is mostly used in problems which have
many near–optimal solutions, and it is very efficient if a function is continuous.
Turan and Uyan randomly select a chaining value, and search for other chaining values close to
this one which minimize the Hamming distance of the mappings of the pair m1, m2.
We used the hill climbing algorithm starting from the initial values to try to find two message
blocks m1, m2 which are mapped (by the permutation of Shabal) to two very close values, then
we have a near–collision.
The algorithm starts with a random pair of messages m1, m2 and then tries to adjust m2 to
minimize the Hamming distance between the mappings of the pair. The Hamming distance
HD of the m2 and the adjusted message is small, k represents the maximum Hamming distance
of this pair and Sk(x) is the set of all elements for which the Hamming distance to x is smaller
or equal to k. The reason for this is that if the distance is small, the search space is small3; thus
this can be explored in feasible time.
A pair of messages m1, m2 is called k–opt if for all messages m3 such that HD(m2, m3) ≤ k , we
have

HD [P(IV, m1),P(IV, m2)] ≤ HD [P(IV, m2),P(IV, m3)] .

If a pair is k–opt, a new message pair is randomly selected, the algorithm repeats this n times.

Algorithm: HillClimbing(k, n)
Randomly select m1, m2;
distbest = HD (P(IV, m1),P(IV, m2));
while (m1, m2) is not k–opt

m2 = x such that x ∈ Sk(m2) with HD (P(IV, m1),P(IV, x)) < distbest;
distbest = HD (P(IV, m1),P(IV, x));

return (m1, m2, distbest)

3And for a linear function this would be a very efficient maximizing algorithm

Nieke Aerts 55

Chapter 3: Shabal

We have run the algorithm with parameters k = 2 and n = 3000 which gave the following
results. In the table p represents the number of times the first loop of step 2 of the permutation
is used, e.g. if p = 1 there are 16 updates for A and B in the second step.

p B A&B Message pair
1 179 337 M1: 0000757F 000070E3 00005699 00006D8B 00007910 000018FB

00005E66 00005279 00003B26 0000768D 0000008B 00004E94
000054F1 00006D02 000026FF 0000027A

M2: 00001F6F 000051BA 0000516F 00006060 00007187 00004F5D
000023F8 0000019F 00005563 0000221A 00004107 000046A3
00000EB8 000052AD 0000349E 00006407

2 202 390 M1: 0000500B 00007802 00004C3A 00005401 00007B52 00003279
00005F95 00007A52 00004B1F 000035DC 000064AF 0000427B
00002D36 00004F10 00005221 00005526

M2: 000059B5 000032D9 000036ED 00001F91 000042DA 000018B5
00006EEE 00000276 000035C4 00002443 00004FE0 00005806
00003613 00004B23 00005510 0000FBB1

3 204 404 M1: 00001C52 000072E4 00003AEF 000060A6 00001146 00003714
00006DC3 00002879 00007EA8 0000167B 00005B84 00000DF3
00002A74 0000248F 00005D1D 0000142A

M2: 000054F4 00003AC7 00002377 000057D2 00000B0F 00005A81
00000CEA 00004A56 00007BE2 000032AF 00004E43 00006A44
0000405B 0000739B 000013C3 000058B5

Table 3.1: In the second column we have HD(B, B′) and in the third HD(A||B, A′||B′) where B
has 512 bits and A||B has 896 bits.

The Hamming distance of the outputs is not very small. The most important reason for this is
that P is far from continues. A hash function should map two messages m and m[i] that are
almost equal4 to outputs that are far from equal, preferably of Hamming distance close to n/2,
so the inner primitive should not be continuous. Because of this, the hill climbing algorithm is
not efficient on hash functions.

3.12 Rotational Attack

The rotational distinguisher given by Van Assche shows that the permutation is not ideal, we
will first describe this distinguisher and then explain why this is not applicable to the compres-
sion function.
A rotational distinguisher for the permutation compares the outputs of x and x′, where for
all words we have x′[i] = x[i] ≪j. As discussed in Appendix D, the rotational difference is
invariant under the operations XOR and rotation. For the other operations +,U ,V we use the
probability that the difference is invariant to find the probability that the outputs of x and x′ are
rotational. We use:

Pr[x≪j +y≪j= (x + y)≪j] =
1
4
(1 + 2−j)(1 + 2j−n)

Pr[U (x≪1) = U (x)≪1] = 2−1.585

4Recall that m[i] is the message m with the bit on position i complemented.

56

Cryptanalysis of Hash Functions

Pr[V(x≪1) = V(x)≪1] = 2−1.737.

For j = 1, e.g. 1–bit–rotation, we have probabilities 2−1.415, 2−1.585, 2−1.737 respectively.
The permutation contains 36 additions, and the operations U and V are applied 48 times, and
thus the probability of a rotational pair to give a rotational output is

Pr[P(a, b, c, m) = P(a′, b′, c′, m′)] ≈ 2−(36·1.415+48·1.585+48·1.737) = 2−210.

If P would be an ideal permutation, this would be 2−896, and thus we conclude that P is not
ideal.
The main issue which makes the rotational attack of Van Assche [31] not applicable to the full
Shabal is that the initial values for A, B and C are not rotational. The distinguisher requires the
possibility to input x and x′ = x ≪1 and in the compression function only the message block
can be chosen (not the start variables). One way to counterfeit this, is to first digest a (number
of) message block(s) such that the internal state becomes (close to) rotational and then apply
rotational analysis from there.
The next problem then will be the block counter which is XOR–ed to A. It only affects the first
two words of A (and for small messages only one of the two), but it will spread quit fast due to
the three rounds in step 2 of the permutation. So it might be useful to first try the above attack
without using the counter.
Also the final rounds are expected to make the probability for a rotational pair smaller. This
could be countered by finding a message block that has a high probability of maintaining the
rotational property, and using this as the last block. But the final rounds digest the same message
block and different internal states, so finding such a message block could be expensive. So again,
the above analysis should first be tried without the final rounds.

3.13 Shift Attack

The shift attack compares the outputs of a tuple (x, x′) where x′ = x �i.
The shift difference is invariant under all operations of P , except for rotation. For rotation we
have:

Pr[(x≪r)�s= (x �s)≪r] = 2−2t

where t = min(r, s, n− r, n− s), proved by Sokolowski [38].
Let us look at a shifted pair, x and x �1. In the permutation the words of B are rotated over
17 positions in step 1 and in step 2 the words of B are rotated over 1 position and the words
of A are rotated over 15 positions. The probability that the shifted input pair gives a shifted
output pair is 2−2 for each of these rotations, as the shift value is the minimum. So in total,
the probability for a shifted input pair to find a shifted output pair after the permutation is
2−2(16+3·16+3·16) = 2−224.
For an ideal permutation F we find

Pr[F (x �1) = (F (x))�1] = 2−896

and again we can conclude that the permutation of Shabal is not ideal.
This attack can be improved by choosing particular values for the B– and C–input. Choosing the
values for B makes it possible to have probability 1 for step 1, that is for all words of B we have
(B[i]≪17) �1= (B[i] �1)≪17. Even more, we could choose B such that it also holds for the
first round of step 2. In this case we would proceed through 16 + 16 rotations with probability
1 and the probability to find a shifted output of P drops to 2−224+64 = 2−160.

Nieke Aerts 57

Chapter 3: Shabal

The values of C help us pass through the first 16 rotations of A in step 2 with probability 1, C is
such that for each word of A we have (5 · A[i]≪15 ⊕C[j])�1= 5 · (A[i]�1)≪15 ⊕C[j]. Then
the probability of a shifted output pair drops even further to 2−160+32 = 2−128.

The advantage of a left shift5 attack compared to a rotational attack is that the probability
of maintaining a shifted pair under U and V is 1 (for a rotational pair this depends highly on
the rotation amount, but for 1 it is approximated by Van Assche as 2−1.585 and 2−1.737 respec-
tively [31]).

This attack can not be extended to the full hash function, as then it is not possible to choose the
input pairs for A, B and C as shifted pairs.

3.14 Differential Attack

The first differential path for the permutation of Shabal has been given by Novotney [32]. This
distinguisher shows that the diffusion is not sufficient for a given input difference, thus the
output can be distinguished from the output of a random oracle. Novotney uses the following
input differences in A and B:

∆A0[10] = 80000000

∆B−1[7] = 00002000

Note that the difference of B after the first step of the permutation (rotation to the left by 17) is
∆B0[7] = 40000000. Recall that with B−1 we present the initial value of B, before step 1 of the
permutation.
This pair of differences does not diffuse until round 26 with some probability. The diffusion is
described in the following list. A list of all rounds can be found in Appendix B.

• round 1 ∆A1[1] = ∆(B0[10]∧ B0[7]), so ∆A1[1] = 0 if ∆B0[10]∧ B0[7] = 0, this occurs with
probability 1/2, as there is only a 1–bit difference in B0[7]. If we would restrict B−1[10] = 0,
the difference vanishes with probability 1. So we conclude ∆A1[1] = ∆B1[1] = 0.

• round 7 ∆B1[7] = ∆B0[7]≪1= 80000000.

• round 10 ∆A1[10] = ∆
(
3(A0[10])⊕ B1[7]

)
, now since 3∆A1[10] = ∆A1[10] = ∆B1[7] =

80000000, the differences will cancel and thus ∆A1[10] = ∆B1[10] = 0.

• round 14 ∆A2[2] = ∆(B1[7] ∧ B1[4]), so ∆A2[1] = 0 if ∆B1[7] ∧ B1[4] = 0, this occurs with
probability 1/2. So we conclude ∆A1[1] = ∆B1[1] = 0 with probability 1/2.

• round 17 ∆A2[5] = ∆(B1[10] ∧ B1[7]), so ∆A2[5] = 0 if ∆B1[10] ∧ B1[7] = 0, this occurs
with probability 1/2, as there is only a 1–bit difference in B1[7]. So we conclude ∆A2[5] =
∆B2[1] = 0 with probability 1/2.

• round 23 ∆B2[7] =
(
∆B1[7]

)
≪1= 00000001

• round 26 ∆A3[2] = ∆B2[7] = 00000001 and ∆B2[10] = ∆A3[2] = 80000000.

At round 26 we find 1–bit differences in three words A3[2], B2[7] and B2[10] with probability
1/8, or probability 1/4 if we are allowed to set B−1[10] = 0.

5In the following we will use shift if we mean left shift, as this maintains many operations and the right shift does
not. If we mean right shift we will explicitly mention it.

58

Cryptanalysis of Hash Functions

In round 32 the first output word B3[0] is set, thus there are only 6 rounds in which the differ-
ences can diffuse for this particular word. This appears not to be enough and it is thus possible
to distinguish between the output of the permutation and the output of a random oracle. Novot-
ney measured the bias of all bits of the output of the first word of B experimentally. This results
in a distinguisher of complexity 223 for bit 26 and if the value for B−1[10] can be chosen the
complexity descends to 221.
A detailed description of this path is given in Appendix B.

3.14.1 Combination of attacks

Wang uses the combination of modular differences and XOR differences to break MD5 [18]. The
advantage of this combination compared to only using XOR differences is that the active bits are
determined. For example a two–bit XOR difference (1, 1) could mean (0, 0), (1, 1) or (1, 0), (0, 1)
which can make a difference for example when these bits are multiplied in a later stage. If also
the modular difference is known, then we can distinguish between the two cases above and the
difference after the multiplication is also known.
The differential path used by Wang is most likely found by hand. When the path is given, the
combination of the differences makes it easier to find conditions to enlarge the probability of the
path. If a set of sufficient conditions exist, then the messages satisfying these conditions will,
with high probability, lead to a collision.
Isobe and Shirai found a differential path for a pseudo–collision [17] for which the messages
differ only in one bit. They used a computer program to decide whether the differences in B
effect the multiplication, they chose the path where the differences of A and B are of smallest
weight. Instead of using the combination they considered all possible difference patterns and
thus the combinational attack will probably not improve the attack of Isobe and Shirai.
Fouque et. al. presented an algorithm to automatically improve a differential path [39], to
minimize the number of conditions6. The algorithm is written for MD4, and they improved
the results of Wang [40]. The algorithm starts from the output and finds a start point for that
output. Thus, the first run might give a pseudo–collision. Then the algorithm is ran again to
modify the path to lower the differences from the initial value.
The algorithm is trying to go through the whole search space in a smart way, i.e. if a step leads
to high weight differences then this path is abandoned and cheaper corrections are favored to
expensive corrections. The message block space of Shabal is the same as of MD–4 and MD–5.
But the operations in the permutation of Shabal are more time consuming, therefore this attack
is not efficient for Shabal.

3.15 Algebraic properties of Shabal

Tonien has described a way to use algebraic properties of hash functions for a collision test [41].
He wants to apply this to SHA–1, but it can be applied to any function for which each of the n
output bits can be described by a multivariate polynomial.

6An example of such a condition: if ∆xi = 0 then xi = x′i = 1, and not xi = x′i = 0.

Nieke Aerts 59

Chapter 3: Shabal

3.15.1 Algebraic collision test for l ≤ log2(r)

For the full description we refer to the analysis of Tonien [41].
Let hi be the ith output bit for i = 1, . . . , n and mi the ith input bit for i = 1, . . . , j. Let F be the
mapping such that hi = Fi(m1, . . . , mj). This map exists, but is not easily discovered for each
hash function, as we will see later on. Now there exists a n× 2j matrix F for F such that:

h1

. . .

hn

 = F


1

m1
. . .

m2 . . . mj
m1m2 . . . mj


Now Tonien uses that a k× 2l matrix has a left inverse if k > 2l and the matrix is of full rank. If
one chooses l indices ij where the input is nonzero, then the n× 2l matrix Fl is such that:


h1

. . .

hn

 = Fl


1

mi1
. . .

mi2 . . . mil
mi1 mi2 . . . mil


So we choose l < log2(n) and find the rank of Fl to decide whether Fl has a left inverse. If Fl
has a left inverse there is a one–to–one correspondence between input and output. So then there
exist no two different messages, with active bits only in the given l places, which are mapped
to the same bit–sequence. However if the matrix is not of full rank, colliding messages can be
found by solving linear equations. The difference of the two messages must be in the nullspace
of F .

3.15.2 Collisions for l > log2(r)

If an n× 2l matrix Fl has full rank, where 2l > n, then the matrix has a right inverse. We know
that the dimension of the nullspace of Fl is equal to the dimension of the domain minus the
rank of Fl . As here we have rank n strictly smaller than the dimension of the domain 2l , the
nullspace has dimension greater than 0. So there are non–zero elements in the nullspace of Fl .
Fl has a right inverse F−1

l , so Fl F−1
l = In where In is n× n the identity matrix.

An inverse can be computed using F−1
l = FT

l (Fl FT
l)
−1. We want to find m 6= m′ such that

Flm = Flm′, now if we let m′ = F−1
l Fm then:

Fm′ = FF−1
l Fm = Fm.

There are restrictions since m′ should be of the form (1, m′i1 , . . . , m′i1 m′i2 . . . m′il)
T . So we get a set

of 2l − l − 1 equations. If this set of equations has a solution, we have found a pair of colliding
messages.

60

Cryptanalysis of Hash Functions

Small example

Let
h1 = m1 + m2
h2 = 1 + m1 + m2
h3 = m1m2

then we find

F =

 0 1 1 0
1 1 1 0
0 0 0 1


and

F−1F =


1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 1


thus the set of 2 equations:

1 + m1 + m2 = 0
m1m2 = 0.

This system has two solutions m = (1, 0) and m′ = (0, 1), so we find a colliding pair. This is not
always possible and for more complex mappings this will be time consuming.

3.15.3 Application to Shabal

First we shall describe how the operations of the compression function of Shabal can be de-
scribed as bit operations.
Rotation and XOR are bit–operations. The negation of x can be replaced by 1 − x and x ∧ y
operation by xy. Now we need to describe U and V .
U (x) = 3x = x + x �1 can be bitwise defined by:

c0 = 0

w0 = x0

c1 = x0x1

wi = ci ⊕ xi ⊕ xi−1

ci+1 = xixi−1 ⊕ cixi ⊕ cixi−1

where wi are the result bits and ci are the so–called carry bits, for i = 0, . . .,n.
And the same way V(x) = 3x = x + x �1 can be bitwise defined by:

Nieke Aerts 61

Chapter 3: Shabal

c0 = 0

w0 = x0

c1 = 0

w1 = x1

c2 = x0x2

wi = ci ⊕ xi ⊕ xi−2

ci+1 = xixi−2 ⊕ cixi ⊕ cixi−2

where wi are the result bits and ci are the so–called carry bits, for i = 0,

Complexity

The bitwise definitions of U and V will raise the size of the internal state if a lot of the message
bits are unknown. If for example only one word of the message is treated as unknown, these
32 variables will be inserted in two A in a particular step, in the next step this word of A is
inside U and V and the result in this step will contain the 32 degree multivariate polynomial
x0x1 · · · x31. This part will be 0 unless all bits are 1–bits, so most probably this will have no effect.
So the degree of the equations can be downsized by setting a limit on the weight of the words of
the message, if a word has at most weight l, then any multiplication of more than l bits will be 0.

Find polynomials for low–weight messages

The polynomials for two active bit–positions, x1 and x2 can be found by evaluating F in 0, ex1 ,
ex2 and ex1 ⊕ ex2 , where e represents the unit vector. Then the polynomials are given by:

F(x1, x2) = F (0) +F (ex1)x1 +F (ex2)x2 +F (ex1 ⊕ ex2)x1x2.

So find the complete polynomial, so for all bit–positions active this would require 2512 queries
to the compression function of Shabal. If we want to apply the algebraic collision test to Shabal,
we need l ≤ log2(512) = 9. So we can test the existence of collisions of messages of weight
at most 9. Finding the polynomial for an active 9–tuple, requires ∑9

i=0 (
9
i) = 29 queries to the

compression function. But there are (512
9) possible 9–tuples, so to do this for all 9–tuples requires

(512
9)29 queries.

Besides this, it is assumed that there will not be such a collision.

l > 9

To find the matrix for an l–tuple, l > 9, costs 2l compression function queries. From this
we could find the nullspace which costs a certain number of matrix operations. But then we
find an overdetermined system, as we have that both message vectors must be of the form
(1, m1, m2, . . . , m1m2, . . . , m1 . . . ml) and the difference should be in the nullspace. So we have l
degrees of freedom and 2l constraints. Only in very special cases this system will have a solution.
Since not all elements of the vector (1, m1, m2, . . . , m1m2, . . . , m1 . . . ml) are independent.

62

Cryptanalysis of Hash Functions

3.16 Conclusions on the security of Shabal

Most results on Shabal are distinguishers. A distinguisher does not often lead to an attack on
the full hash function, and thus distinguishers are not always seen as important. Indifferentia-
bility and distinguishers are originally defined for ciphers, ciphers are supposed to behave like
a random oracle and therefore it is important that they can not be distinguished from a random
oracle.
For a hash function, the terms of security are not (yet) defined in terms of indifferentiability,
and the distinguishers for Shabal can not be used to find preimages or collisions (yet).
The distinguishing property of distinguishers is not a reason to question the security of Shabal,
none of the distinguishers applies to the full function, and they do not use the initial values of
Shabal.
On the other hand is the indifferentiability proof of the authors of Shabal changed two times be-
cause of distinguishers. The proof was based on an incorrect assumption, that the permutation
is ideal. Again there are a few assumptions in the proof, based on distinguishers, but a new,
better distinguisher might reject these assumptions again.
At some point the authors also stated that the compression function is as secure as when the
counter and the final rounds are removed, this proof also does not take the initial values into
account. Many distinguishers, but in particular the rotational distinguisher of Van Assche will
then work on the full hash function.
In the last proof this is somewhat taken into account, because pC relies on whether there are
final rounds or not. If the final rounds of Shabal are removed, the probability that abortv will
occur will increase to N2−278 due to the last term. And, following the proof, Shabal will be
indifferentiable from a random oracle up to 2278 requests.

We conclude that it is difficult to have trust in the indifferentiability proofs if they change often
and still rely on assumptions that have not been proven to be right.

3.16.1 Ideas of further Analysis

The combination attack of modular addition and XOR differences could be useful to gain dif-
ferential paths with high probability. The path search algorithm of Fougue et al. will not be
convenient for Shabal because the search space is too large.

Yu et al. recently started to apply a rebound attack to an ARX hash function [42], this might
work for Shabal too.

Nieke Aerts 63

Chapter 4

BLAKE

BLAKE is one of the five finalists of the NIST SHA–3 competition. BLAKE is designed by Aumasson
et al [43].
It was possible to adjust the function after it was selected for the next round. For BLAKE the
number of rounds have changed and the names of the functions, no extreme changes. This
implies that the function has been steady since the first round, and all the analysis is still
applicable.
In this chapter we will first describe BLAKE, discuss the recent analysis and we will explain some
discrepancies in the previous analysis.

4.1 The mode of operation

The submission document of Blake describes four different designs, which digest 224, 256, 384
an 512 bits respectively. As the functions are quite similar, in this thesis we will mostly elaborate
on BLAKE–256.
The 224– and 256–bitlength digest are produced by the BLAKE–256 function, which operates on
512–bit message blocks. The 384– and 512–bitlength digest are produced by BLAKE–512, which
operates on 1024–bit message blocks. The differences between these four functions are, the
message block length, the padding, the initial values, the number of rounds and the truncation.
The hash of a message is constructed by the following steps; first the message is padded, then
the compression function iteratively digests all message blocks, the output is the last chaining
value (or a truncated chaining value), this is the hash of the message.
From now we will only consider BLAKE–256 and we will denote this with either BLAKE–256 or
just BLAKE.
A message is padded so that the length is congruent 448 modulo 512. First a 1 bit is appended,
then a sufficient number of zeros, followed by another 1. To end the padding we add a 64–bit
unsigned big–endian representation of the bitlength of the message.

4.1.1 The compression function

BLAKE is a hash function based on the HAIFA structure, so the compression function takes four
input values:

1. a chaining value h of 256 bits,

2. a message block m of 512 bits,

64

Cryptanalysis of Hash Functions

3. a salt s of 128 bits,

4. and a counter t of 64 bits.

The four variables contain 960 bits all together, and the output is the new chaining value. So the
compression function is C : {0, 1}960 → {0, 1}256 for BLAKE–256.
The internal state of the compression function is a 4× 4–word matrix, this matrix contains 512
bits.
First the state is initialized as follows:

v0 v1 v2 v3
v4 v5 v6 v7
v8 v9 v10 v11
v12 v13 v14 v15

←


h0 h1 h2 h3
h4 h5 h6 h7

s0 ⊕ c0 s1 ⊕ c1 s2 ⊕ c2 s3 ⊕ c3
t0 ⊕ c4 t0 ⊕ c5 t1 ⊕ c6 t1 ⊕ c7


Where h represents the chaining value, s the salt, t the counter and c a constant, each element of
the matrix is a 32–bit word. In the first round the initial values are used as chaining variables.
The initial values and the constants are given in Appendix C.

The Round function

The internal state of the compression function is twice the size of a chaining variable, so 512
bits for BLAKE–256. The compression function is based on an inner primitive, the round function
R : {0, 1}1024 → {0, 1}1024, which consists of addition, rotation and XOR (ARX).
Each round the functions G0, . . . ,G7 are applied to a subset of the state. We call the part where
the first four are applied the column step:

G0(v0, v4, v8, v12), G1(v1, v5, v9, v13), G2(v2, v6, v10, v14), G3(v3, v7, v11, v15)

and last four together are called the diagonal step:

G4(v0, v5, v10, v15), G5(v1, v6, v11, v12), G6(v2, v7, v8, v13), G7(v3, v4, v9, v14).

And Gi(a, b, c, d) in round r is defined as:

a ← a + b + (mσr(2i) ⊕ cσr(2i+1))

d ← (d⊕ a)≫16

c ← c + d

b ← (b⊕ c)≫12

a ← a + b + (mσr(2i+1) ⊕ cσr(2i))

d ← (d⊕ a)≫8

c ← c + d

b ← (b⊕ c)≫7 .

Here σ is a permutation, to make sure that the same word of a message block is not inserted on
the same spot twice. We will omit the i for statements that do not depend on i and thus with G
we denote any Gi.
For G, for the ⊕ differences we make the following distinctions:

Nieke Aerts 65

Chapter 4: BLAKE

1. ∆a, ∆b, ∆c, ∆d denote the input differences,

2. ∆a∗, . . . , ∆d∗ denote the differences after each element is updated once, and

3. ∆a′, . . . , ∆d′ denote the output differences.

σ0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ1 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3
σ2 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4
σ3 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8
σ4 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13
σ5 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9
σ6 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11
σ7 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10
σ8 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5
σ9 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0

After the ten rounds the new chaining variable is generated as follows:

h′0 ← h0 ⊕ s0 ⊕ v0 ⊕ v8

h′1 ← h1 ⊕ s1 ⊕ v1 ⊕ v9

h′2 ← h2 ⊕ s2 ⊕ v2 ⊕ v10

h′3 ← h3 ⊕ s3 ⊕ v3 ⊕ v11

h′4 ← h4 ⊕ s0 ⊕ v4 ⊕ v12

h′5 ← h5 ⊕ s1 ⊕ v5 ⊕ v13

h′6 ← h6 ⊕ s2 ⊕ v6 ⊕ v14

h′7 ← h7 ⊕ s3 ⊕ v7 ⊕ v15

4.1.2 Toy versions of BLAKE [1]

The authors provided four reduced versions of BLAKE. Now to analyze BLAKE, one can start with
one of the reduced versions, and try to extend the attack to BLAKE or discuss why the missing
property in the reduced version is important. This gives a uniform name to different methods
of analyzing.

BLOKE

The permutations are replaced by the identity function.

FLAKE

The compression function makes no feedforward so the finalization of BLAKE–256 becomes

h′i ← vi ⊕ vi+8.

66

Cryptanalysis of Hash Functions

BLAZE

The addition of constants is removed, so replacing a becomes

a← a + b + mσr .

BRAKE

BRAKE is reduced to have the changes of all three BLOKE, FLAKE and BLAZE.

4.2 Recent Analysis

4.2.1 On the inner primitive G

Aumasson, Guo, Knellwolf, Matusiewicz and Meier exploit the differential properties of the
inner primitive G to find impossible differential paths [44]. The differences in the input of G,
(∆a, ∆b, ∆c, ∆d) and the output (∆a′, ∆b′, ∆c′, ∆d′) are restricted in several ways, they give some
impossible classes and some probability 1 differential characteristics for the cases that there is a
nonzero input difference.
Further they researched the existence of impossible differentials. Defined the inverse of G for 1.5
round, which gives a preimage attack of lower complexity than the one of Li and Liangyu [45].
They conjecture that a meet in the middle strategy for a preimage attack on BLAKE cannot apply
to more than five rounds. Further they repeat what has been done before [46] and conclude that
we need non–linear connectors to find collisions on more than four rounds. Last they give a
bound on the probability for any DC.
Ming, Qiang and Zeng study the reversibility properties of G [47]. This paper exploits some
flaws of the permutation σ and carries out a detailed analysis for differential characteristics of
G and its inverse function. They analyze the security of BLAKE–32. The results show that BLAKE
has a strong resistance against differential attacks.

4.2.2 On toy versions

Vidali, Nose and Pas̆alić found collisions for variants of BLAKE [48]. Collisions for full–round
BLOKE can be found using fixed points of the inner primitive and internal collisions can be found
for full–round BRAKE. So it can be concluded that the permutation and the message padding are
important to the security of BLAKE.

4.2.3 On round–reduced versions

Li and Liangyu attacked 1.5, 2 and 2.5 rounds of BLAKE using message modification [45]. For the
1.5 round attack they guess the value of the message and of v0 and v4 after 1.5 rounds. Then
they calculate forwardly and backwardly the value of the internal state after one round. In case
of equality you will have a preimage, otherwise they modify 4 words of m. Repeat this until a

Nieke Aerts 67

Chapter 4: BLAKE

preimage is found. For the other two number of rounds the also apply a meet–in–the–middle at-
tack. The complexity of the preimage attacks of BLAKE–256 are 2192, 2224 and 2224 respectively.
Guo and Matusiewicz found near–collisions for BLAKE reduced to 4 rounds [46]. They noted
that rotations over 7, 8, 12 and 16 bits are used in the round function, three of those are divisible
by 4. They used a difference that is rotational by 4 and tried to avoid that the differences go
through the rotation by 7. The search space for chaining variables and messages is reduced to
232 by these constraints1, which is feasible. This can be reduced even more and via automatic
search they have found a 24–bit near–collision for 4 rounds reduced BLAKE. This method can
not be extended to more rounds as the search space ist too small. Secondly they state that if
the constants of BLAKE would be equal, the hash output has a symmetry property and can be
distinguished from a random output.
Su, Wu, Wu and Dong applied differential analysis to BLAKE [49]. They found near–collisions
for 4 round–reduced BLAKE–256 and for 4 and 5 round–reduced BLAKE–512. This improves the
result of Guo and Matusiewicz.
Turan and Uyan used the hill–climbing technique to find near–collisions for 1, 1.5 and 2 round–
reduced versions of BLAKE [37]. The hill–climbing technique searches near–optimal solutions of
a minimization problem. In this case we are minimizing the hamming weight of the difference
of two digests. The algorithm starts with two random messages and searches better results
close2 to one of the two messages. Obviously this method will work best if the diffusion of
differences is low, which is the case for BLAKE with a small number of rounds.

4.3 On the full function

Gligorsky stated that the narrow–pipe3 candidates differ significantly from ideal random func-
tions defined over big domains [36]. The size of a subset of the codomain of which the elements
have no preimage, is different for the narrow–pipe hash functions than for an ideal random
function. Especially when the padding is such, that the last block can contain no message bits,
the probability of an element of the codomain to have no preimage is higher than for a ideal ran-
dom function. There are no direct applications or threats to the security of narrow–pipe designs.

There are three more papers on the security of BLAKE which we did not go through4. We
will briefly address them.
Biryukov, Nikolić and Roy apply the boomerang attack to BLAKE–32 [50]. They presented their
attack at FSE 2011.
Aumasson et. al. define tuple cryptanalysis and apply this to BLAKE [51]. They suggest that tuple
cryptanalysis can be a criterion to evaluate ARX algorithms.
Dunkelman and Khovratovich present differential attacks and distinguishers for round–reduced
versions of BLAKE [52]. They argue that their results show that the belief that ARX algorithms
are secure against differential attacks might not hold.

1I don’t think this is true, as we can choose two message words and four chaining words, both of which four positions
determine all other positions, so 22·4+4·4 = 224

2In this case close means that the hamming distance of the difference of the old and the new message is at most 2.
3BLAKE is narrow–pipe as the chaining value is half the size of the message blocks
4Since these papers were published close to the enddate of this project.

68

Cryptanalysis of Hash Functions

4.4 Properties

Recall that ∆a, ∆b, ∆c, ∆d denote the input differences with respect to ⊕, ∆a∗, . . . , ∆d∗ denote
the ⊕ differences after each element is updated once by G, and ∆a′, . . . , ∆d′ denote the output
differences of G with respect to ⊕.
For now, we consider the constants c to be zero. In one round this can be seen as m′ = c⊕m,
where m′ is what we will call the message block, while m is the original message block. After
one round the constants and message blocks are combined differently and therefore the above
does no longer hold. In the latter case we will just evaluate the toy version BLAZE.

4.4.1 The round function is a permutation

First we will show that Gi is a permutation, and then we extend this to the round function. We
consider m to be a constant.

Gi is a permutation

Let Y = {0, 1}128 represent the set of all 4–tuples (a, b, c, d) of 32–bit words. Now Gi is a mapping
from Y to Y , if we consider m to be a constant.
Now for each element y ∈ Y we have Gi(y) ∈ Y since the output of Gi is a 4–tuple of 32–bit
words. So every element has an image.
Now for each element y ∈ Y we can compute the pre–image as follows:

b ← c⊕ (b≪7)

c ← c−−d

d ← a⊕ (d≪8)

a ← a−−b−−(mσr(2i+1) ⊕ cσr(2i))

b ← c⊕ (b≪12)

c ← c−−d

d ← a⊕ (d≪16)

a ← a−−b−−(mσr(2i) ⊕ cσr(2i+1)).

We conclude that every element has a precisely one pre–image, thus Gi is bijective.
A map from a set into itself, which is bijective is a permutation, thus Gi is a permutation.

Extension

Let V = {0, 1}512 denote the set of all 16–tuples (v0, . . . , v15) of 32–bit words. Now the round
function R is a mapping from V to V , again we consider m to be a constant.
We may consider Gi as a mapping from V to V as follows, G0 maps an element (v0, . . . , v3, c4, . . . , c15)
to (v′0, . . . , v′3, c4, . . . , c15), G1 maps an element (c0, . . . , c3, v4, . . . , v7, c8, . . . , c15) to (v′0, . . . , v′3, c4, . . . , c15),
etcetera, where ci represents a constant.

Nieke Aerts 69

Chapter 4: BLAKE

We have already shown that G0 is a permutation on the smaller space Y . Now Y can be repre-
sented with the set of all 16–tuples (a, b, c, d, c4, . . . , c15) where c4, . . . , c15 are constants, let this
set be V∗0 . Now for each Gi there exists a set V∗i such that Gi is a permutation on this set.
Now we state that applying G3 ◦ G2 ◦ G1 ◦ G0 to V gives a permutation.
Here we only take G0, . . . ,G3 into account. Since for each Gi a different part of m is used, each
Gi will map a different 4–tuple of the 16–tuple v independently from every other Gi. Thus, each
Gi permutes a 4–tuple of v, the 4–tuples are disjunct, so after the four mappings the whole state
is permuted.
We conclude that G3 ◦ G2 ◦ G1 ◦ G0 is a permutation on V for fixed m.
Similarly we can conclude that G7 ◦ G6 ◦ G5 ◦ G4 is a permutation on V .
As the concatenation of two permutations is also a permutation, we conclude that the round
function R is a permutation on V for fixed m.

Consequences

Above we have shown that the round function is a permutation if m is fixed. Now to extend this
to more rounds, we want the function to be a permutation of the message for a fixed starting
state. Again we have Y = {0, 1}512 represent the set of all the messages. Now a round is a map-
ping from Y to Y , if we consider m ∈ Y to be the input and the starting state to be a constant.
Since we can find the message given the starting state and the output, we conclude that every
output has a preimage in the form of a message. Therefore the round function is a permutation
of the message.
In the next round we again let the state be fixed (the output of the previous round), digesting
another 512–bit message block is again a permutation of the message block. Now, the parallel
processing of two different 512–bit message blocks in this setting, will carry out two different
states.
In the submission document it is stated that, because the round function is a permutation of the
message blocks, one cannot find two distinct messages that produce the same internal state [43,
P. 32].

Figure 4.1: Two rounds applied to two different messages

Figure 4.1 shows that applying two rounds to two different messages m1 6= m2 could give a
collision. The statement that this does never occur, does not take into account that after one
round, the states are different. Since the states after one round are different (s1 6= s2) the
permutations in the next round are not one and the same. The two different permutations (but
defined on the same set) applied to the two different messages, might output the same state
(s3).

70

Cryptanalysis of Hash Functions

We conclude that the sequence of multiple rounds cannot be seen as a permutation of the
message, as the internal states are not always the same, the permutations are not the same.

4.4.2 Differential Properties

This section is divided in three main parts.
First we will the possible states after one application of G to a state without differences. There
are eight possible end states, one more than is claimed by Aumasson et. al. [44].
In the next section we proof that it is possible to reach the end state (∆, 0, ∆′, 0), which is claimed
otherwise by Aumasson et. al. [44].
Then we will see what happens if another G is added and the consequences of these possibilities.
Last we will discuss the consequences for the round function.

On one Gi

First we will look at input states without differences. Now there will be no changes if both
message block pairs do not have a difference, so we let at least one of them contain a difference.
We split Gi in two halves and look at the two cases, ∆mi = 0 and ∆mi 6= 0.
Case 1: ∆mi = 0
There is no difference inserted in the first half, so ∆mj 6= 0 and this difference spreads in all four
values, so in this case we find ∆a′, ∆b′, ∆c′, ∆d′ 6= 0.
Case 2: ∆mi 6= 0
In this case the difference is spread to all intermediate values, but it could be canceled by ∆mj.
So assume ∆mj 6= 0, then we have the following output restrictions:

∆a′ = 0 ⇒ ∆d′ 6= 0 ∆c′ = 0 ⇒ ∆b′ 6= 0 ∧ ∆d′ 6= 0
∆b′ = 0 ⇒ ∆c′ 6= 0 ∆d′ = 0 ⇒ ∆a′ 6= 0 ∧ ∆c′ 6= 0.

Proof. Recall that all intermediate value pairs have a nonzero difference, ∆a∗ 6= 0 etc. and
∆mi 6= 0.

∆a′ = 0 then ∆d′ = (∆d∗ ⊕ ∆a′)≫8= (∆d∗)≫8 6= 0.

∆b′ = 0 then 0 = ∆b′ = (∆b∗ ⊕ ∆c′)≫7 thus ∆c′ = ∆d∗ 6= 0.

∆c′ = 0 then:
∆b′ = ∆b∗ + ∆c′ = ∆b∗ 6= 0 and
0 = ∆c′ = c∗ + d′ thus ∆c∗ + ∆d′ = 0 thus ∆d′ 6= 0.

∆d′ = 0 then:
∆c′ = ∆c∗ + ∆d′ = ∆c∗ 6= 0 and
0 = ∆d′ = (d∗ ⊕ a′)≫8 thus ∆d∗ = ∆a′ 6= 0.

So we can conclude that there must be at least two words with a non–zero output difference.
Secondly, starting with a zero–differences state it is impossible to end in one of the following
states

(∆, 0, 0, 0), (0, ∆, 0, 0), (0, 0, ∆, 0), (0, 0, 0, ∆), (∆, ∆′, 0, 0), (∆, 0, ∆′, 0), (∆, 0, 0, ∆′), (0, ∆, ∆′, 0).

Nieke Aerts 71

Chapter 4: BLAKE

All but one of these impossible states follow directly from the output restrictions given previ-
ously (the full reasoning is given in Appendix C).

Why is the state (∆, 0, ∆′, 0) impossible? In this section, we use Gm1,m2(a, b, c, d) to represent
the round function G applied to (a, b, c, d) using the message blocks m1 and m2.
Aumasson et. al. conclude that it is not possible to start in a state without differences and end
in (∆, 0, ∆′, 0) after applying G. This conclusion is not clearly explained by them. Further we
will show that it is possible to have this transformation, but there are heavy restrictions on the
input values.
First we take a look at our goal. Using ∆m1 and ∆m2 in G we find

∆a∗ = ∆m1 (4.1)

∆d∗ = ∆m1 ≫16 (4.2)

∆c∗ = ∆m1 ≫16 (4.3)

∆b∗ = ∆m1 ≫28 (4.4)

∆a′ = ∆m1 + ∆m1 ≫28 +∆m2 (4.5)

∆d′ = (∆m1 ≫16 ⊕(∆m1 + ∆m1 ≫28 +∆m2))≫8 . (4.6)

To get to ∆d′ = 0 we need ∆m1 ≫16 ⊕(∆m1 + ∆m1 ≫28 +∆m2) = 0. This happens if

∆m1 ≫16= (∆m1 + ∆m1 ≫28 +∆m2).

This is our first assumption, thus we continue with ∆d′ = 0.

∆c′ = ∆m1 ≫16 (4.7)

∆b′ = (∆m1 ≫28 ⊕∆m1 ≫16)≫7 . (4.8)

To get to ∆b′ = 0 we need ∆m1 ≫28 ⊕∆m1 ≫16= 0. This happens if

∆m1 ≫28= ∆m1 ≫16 .

This is our second assumption.
It is easy to see that if a pair (∆m1, ∆m2) satisfies ∆m1 ≫4= ∆m1 and ∆m2 + ∆m1 = 0 it will
also satisfy the assumptions above.
Note that when a pair satisfies the two assumptions we might find an output where ∆b′ or ∆d′

are not zero. For example, this will happen when the difference of a + m1 and a + m′1 is not
∆m1. We will use this to estimate the success probability of each path.

For all the following lemma’s in this paragraph, we use the following assumption. Let
r ∈ {0, 1}4 be random, let m1 −−m′1 = ∆m1 = r|| . . . ||r and m2 −−m′2 = ∆m2 = 232 −−∆m1.

Lemma 3. If all of the input values (a, b, c, d) are zero, then:

Gm1,m2(a, b, c, d)−−Gm′1,m′2
(a, b, c, d) = (∆, 0, ∆′, 0)

with probability 1.

72

Cryptanalysis of Hash Functions

Proof.

∆a∗ = ∆m1 since there is no carry due to a = 0.
∆d∗ = ∆m1 ≫16 .
∆c∗ = ∆m1 ≫16 since c = 0.
∆b∗ = ∆m1 ≫28 .
∆a′ = ∆m1 + ∆m1 ≫28 +∆m2 = ∆m1 since ∆m2 = 232 −−∆m1 and

∆m1 = ∆m1 ≫4 .
∆d′ = (∆m1 ≫16 ⊕∆m1)≫8= 0 since ∆m1 = ∆m1 ≫4 .
∆c′ = ∆m1 ≫16 since ∆d′ = 0.
∆b′ = (∆m1 ≫28 ⊕∆m1 ≫16)≫7= 0 since ∆m1 = ∆m1 ≫4 .

So we have not more restrictions and we find probability 1.

Lemma 4. If precisely three of the four input values (a, b, c, d) are zero, and the fourth is a power of 2,
then

Gm1,m2(a, b, c, d)−−Gm′1,m′2
(a, b, c, d) = (∆, 0, ∆′, 0)

with probability 1/2.

Proof. We find
Gm1,m2(a, b, c, d)−−Gm′1,m′2

(a, b, c, d) = (∆, 0, ∆′, 0)

if and only if Equations 4.1 to 4.8 hold.
Let (a, b, c, d) = (2j, 0, 0, 0), in total we have 32 different options, but there are only four options
which give different restrictions. Since m1 is rotatable over four, j = 0 and j = 4 will give the
same restrictions.
We state that if ∆m1j mod 4 = 0 Equations 4.1 to 4.8 hold.

∆a∗ = ∆m1 since there is no carry5 due to ∆m1j mod 4 = 0.
∆d∗ = ∆m1 ≫16 .
∆c∗ = ∆m1 ≫16 since c = 0.
∆b∗ = ∆m1 ≫28 .
∆a′ = ∆m1 + ∆m1 ≫28 +∆m2 = ∆m1 since ∆m2 = 232 −−∆m1 and

∆m1 = ∆m1 ≫4 .
∆d′ = (∆m1 ≫16 ⊕∆m1)≫8= 0 since ∆m1 = ∆m1 ≫4 .
∆c′ = ∆m1 ≫16 since ∆d′ = 0.
∆b′ = (∆m1 ≫28 ⊕∆m1 ≫16)≫7= 0 since ∆m1 = ∆m1 ≫4 .

We conclude that we find ∆m1j mod 4 = 0 with probability 1/2, and thus if a = 2j we find

Gm1,m2(a, b, c, d)−−Gm′1,m′2
(a, b, c, d) = (∆, 0, ∆′, 0)

with probability 1/2.
The cases were b, c or d are not zero can be proved similarly, this part can be found in Ap-
pendix C

Lemma 5. If precisely two of the four input values (a, b, c, d) are zero, and the other two are a power of
2, then

Gm1,m2(a, b, c, d)−−Gm′1,m′2
(a, b, c, d) = (∆, 0, ∆′, 0)

with probability at least 1/4.

Nieke Aerts 73

Chapter 4: BLAKE

Proof. There are 6 choices for the two nonzero input values, again we will only discuss one case
here, the others can be found in Appendix C.
We look at the case that a and b are the nonzero inputs. For (a, b, c, d) = (2i, 2j, 0, 0) we distin-
guish two cases, i = j and i 6= j.

Case: i = j We state that Equation 4.1 to 4.8 hold if (∆m1)i = (∆m1)i+1 = 0 for a = b = 2i.

∆a∗ = (a1 + b1 + m1)⊕ (a2 + b2 + m′1)
= (2i+1 + m1)⊕ (2i+1 + m′1)
= (2i+1 ⊕m1)⊕ (2i+1 ⊕m′1) if (∆m1)i+1 = 0
= ∆m1

∆d∗ = a∗1 ≫16 ⊕a∗2 ≫16
= (∆m1)≫16
= ∆m1

∆c∗ = d∗1 ⊕ d∗2
= ∆m1

∆b∗ = (b1 ⊕ c∗1)≫ 12⊕ (b2 ⊕ c∗2)≫ 12
= (b1 ⊕ c∗1 ⊕ b2 ⊕ c∗2)≫ 12
= (m1 ⊕m′1)≫12
= ∆m1

∆a′ = (a∗1 + b∗1 + m2)⊕ (a∗2 + b∗2 + m′2)
=

(
(2i+1 ⊕m1) + (2i−−12 ⊕ 2i−−29 ⊕m1) + m2

)
⊕
(
(2i+1 ⊕m′1) + (2i−−12 ⊕ 2i−−29 ⊕m′1) + m′2

)
=

(
(2i+1 ⊕ 2i−−12 ⊕ 2i−−29) + (2m1 + m2)

)
⊕
(
(2i+1 ⊕ 2i−−12 ⊕ 2i−−29) + (2m′1 + m′2)

)
=

(
(2i+1 ⊕ 2i−−12 ⊕ 2i−−29)⊕m1

)
⊕
(
(2i+1 ⊕ 2i−−12 ⊕ 2i−−29)⊕ 2m′1

)
if (∆m1)i = 0

= ∆m1
∆d′ = (d∗1 ⊕ a′1)≫8 ⊕(d∗2 ⊕ a′2)≫8

= (∆d∗ ⊕ ∆a′)≫8
= (∆m1 ⊕ ∆m1)≫8
= 0

∆c′ = (c∗1 + d′1)⊕ (c∗2 + d′2)
=

(
(2i−−17 ⊕m1) + (2i+1 ⊕ 2i−−12 ⊕ 2i−−17 ⊕ 2i−−29)

)
⊕
(
(2i−−17 ⊕m′1) + (2i+1 ⊕ 2i−−12 ⊕ 2i−−17 ⊕ 2i−−29)

)
=

(
2i−−16 ⊕m1 ⊕ 2i+1 ⊕ 2i−−12 ⊕ 2i−−29)⊕ (2i−−16 ⊕m′1 ⊕ 2i+1 ⊕ 2i−−12 ⊕ 2i−−29)

= ∆m1
∆b′ = (b∗1 ⊕ c′1)≫7 ⊕(b∗2 ⊕ c′2)≫7

=
(
b∗1 ⊕ b∗2 ⊕ c′1 ⊕ c′2

)
≫7

= (∆m1 ⊕ ∆m1)≫7
= 0.

We conclude that if (∆m1)i = (∆m1)i+1 = 0 the equations are satisfied. This happens with
probability 1/4.

Case: i 6= j The proof that 1/4 is a lower bound is quite similar as the proof for i = j and so
are the proofs for all five other couples of (a, b, c, d). All this can be found in Appendix C.

Lemma 5 states that 1/4 is a lower bound of the success probability of this path. In Appendix C
it is shown that there are couples a = 2i, b = 2i such that the success probability is 1/2.

Lemma 6. If precisely one of the four input values (a, b, c, d) are zero, and the other three are a power of

74

Cryptanalysis of Hash Functions

2, then
Gm1,m2(a, b, c, d)−−Gm′1,m′2

(a, b, c, d) = (∆, 0, ∆′, 0)

with probability at least 1/8.

The proof is given in Appendix C, there we also give some examples.

Lemma 7. If none of the four input values (a, b, c, d) is zero, and all of them are a power of 2, then

Gm1,m2(a, b, c, d)−−Gm′1,m′2
(a, b, c, d) = (∆, 0, ∆′, 0)

with probability at least 1/16.

This proof is also given in Appendix C. There are particular cases that this probability is even
1/2, some examples are given in the appendix.

Non–zero differences in input state Now that we have concluded that there are eight possible
states to end after one G starting in a state without differences:

(∆0, 0, ∆1, 0), (0, ∆0, 0, ∆1), (0, 0, ∆0, ∆1), (∆0, ∆1, ∆2, 0),

(∆0, ∆1, 0, ∆2), (∆0, 0, ∆1, ∆2), (0, ∆0, ∆1, ∆2), (∆0, ∆1, ∆2, ∆3)

For an internal collision we want to start without differences, apply one round and end without
differences. That is, we apply G twice. So the goal is to go from any of the possible non–zero
difference states to a zero difference state.

Figure 4.2: Options if all differences can cancel each other.

Nieke Aerts 75

Chapter 4: BLAKE

Figure 4.2 shows the progress of differences in the ideal case, i.e. each difference can cancel any
other, under XOR and modular addition.

• The first block represents the start state, the white blocks represent no differences and the
grey blocks represent a difference. The exact difference of the grey blocks is not known.

• The second block represents the possible difference states after the column step of G with
either a difference in the message blocks (∆) or no difference (0).

• The third block represents the possible difference states after the diagonal step of G with
either a difference in the message blocks (∆) or no difference (0).

What we see is that none of these go to a state without differences. What we can reach, are
states that are easily converted to a zero difference state. For example, (∆, 0, 0, 0) only needs
one message block difference equal to ∆ to reach a zero difference state. But in a round G is
applied twice to each state. After one round, the same message blocks are used but in a different
sequence due to the permutation σ, if it is possible to remove the last difference, then in the next
step we will add differences again.

Collisions for a sequence of G When we start with two all zero states, and apply G three times
we can get a collision. First we use the message blocks to get to state difference (∆, 0, ∆, 0). Then
we want to reach intermediate state difference (∆′, 0, 0, ∆′′) which easily converts to (∆′′′, 0, 0, 0).
The next step we choose ∆m = 232 −−∆′′′ and we reach intermediate state difference (0,0,0,0),
which stays without differences if the message block is zero.
If the start states are not zero, but are equal, we find probabilities as for the first step, that is
starting with a = 2i gives probability 1/2, with a = 2i, b = 2j gives 1/4 etcetera.

Figure 4.3: The first five message blocks are nonzero.

The states are represented by sj
i = (aj

i , bj
i , cj

i , dj
i) for i = 0, . . . , 5 and j = 1, 2 denotes the first or

the second state. The state sj
i is mapped by a column step or diagonal step of G to sj

i+1. The
difference between the states is meant when j is omitted
We assume that m2

i = 0 for all i and thus the difference mi is equal to m1
i . These are given by:

m1 = r · 20 + r · 24 + . . . + r · 224 + r · 228 f or r ∈ 0, 15,
m2 = 232 −−m1,
m3 =

((
c2

2 +
(
d2

2 ⊕ (a2
2 + b2

2)
)
≫16 −− c1

2
)
≪16 ⊕d1

2
)
−−a1

2 −−b1
2,

m4 =
(
d1

3 ⊕ d2
3 ⊕ (a2

3 + b2
3)
)
−−a1

3 −−b1
3,

m5 = a2
4 −−a1

4.

When the start states (a, b, c, d) are restricted as in paragraph 4.4.2 this path has the same success
probability as the first step, i.e. for one nonzero block which is of the form 2j we find (0, 0, 0, 0)
with probability 1/2.
This does not automatically work for the definition of the round function, as this consists of
1.5 rounds, the block m5 must be equal to some block in the first round, the permutation gives
which block this is. And therefore, the next block (m6) can not be zero, and will thus introduce

76

Cryptanalysis of Hash Functions

a new difference in the states after 2 rounds.
Even if we would look at three rounds, which consists of 6 half rounds and thus we could
apply the above twice, we would still have the restrictions m5 = m1 and m6 = m2 etcetera. This
complicates the attack in the original function.

On the full round function R

Assume no differences introduced in the column step6 of G, then the introduction of a difference
in the diagonal step will distribute to at least to words of the internal value, by the previous
result.
Now assume there are differences introduced in the column step, to make those differences
disappear we must have ∆b = ∆c = 0. Thus after the column step the differences must be of
the form (∆, 0, 0, ∆′), but the results in the previous paragraph state that ∆b′ = 0 ⇒ ∆c′ 6= 0.
So there will be no two values mapped to the same output, thus the round function must be
unique, and so injective.

4.4.3 Fixed points of G

The authors of BLAKE state that there is only one fixed point for the linear approximation of G
with m⊕ c always zero, and that is the all zero state [43, P. 31]. We denote a fixed point with
m⊕ c = 0 with 0–fixed point. We denote the linear approximation of G with Ḡ. For a 0–fixed
point (a, b, c, d) we should have Ḡ(a, b, c, d) = (a, b, c, d). Thus the authors state that it is not
possible to satisfy the following equations:

a∗ = a⊕ b
d∗ = (d⊕ a∗)≫16
c∗ = c⊕ d∗

b∗ = (b⊕ c∗)≫12
a = a∗ ⊕ b∗

d = (d∗ ⊕ a)≫8
c = c∗ ⊕ d
b = (b∗ ⊕ c)≫7

with any other 4–tuple than (0, 0, 0, 0).
And therefore they conclude that it is not possible to obtain preservation of differences by the
linearization. If it would be possible to preserve differences, then this difference would be a
0–fixed point of Ḡ.

Fixed points of the linearization of G

We state that for each pair (b, b∗) there exists a fixed point of Ḡ. The fixed point can be found
using the following algorithm:

6first half

Nieke Aerts 77

Chapter 4: BLAKE

Algorithm: Fixed Point of Ḡ
Randomly select b, b∗;

c = (b≪7)⊕ b∗

c∗ = b⊕ (b∗≪12)
d = c⊕ c∗

d∗ = c⊕ c∗

a = d(≪8)⊕ d∗

a∗ = d⊕ (d∗≪16)
m1 = a∗ ⊕ a⊕ b
m2 = a∗ ⊕ a⊕ b∗

return (a, b, c, d, m1, m2)

The construction of this Algorithm is described in Appendix C.
Now with the use of the fixed points we can construct couples of inputs for which the differences
are preserved under Ḡ. Some examples of fixed points and difference preserving couples are
given in Appendix C.

Fixed points of G

As for the linearization of G, we give an algorithm to find fixed points for a couple (b, b∗).
Now in this situation it is not trivial to find difference preserving states, as G is not linear and
therefore

Gm1,m2 [a⊕ δ1, b⊕ δ2, c⊕ δ3, d⊕ δ4]⊕ Gm1,m2 [a, b, c, d] = (δ1, δ2, δ3, δ4)

almost never holds. Obviously this does hold for the trivial couples of any fixed point and the
all zero input.
A fixed point can be found using the following algorithm:

Algorithm: Fixed Point of G
Randomly select b, b∗;

c = (b≪7)⊕ b∗

c∗ = b⊕ (b∗≪12)
d = c−−c∗ mod 232

d∗ = c∗ −−c mod 232

a = (d≪8)⊕ d∗

a∗ = d⊕ (d∗≫16)
m1 = a∗ −−a−−b mod 232

m2 = a−−a∗ −−b∗ mod 232

return (a, b, c, d, m1, m2)

the construction is given in Appendix C.

4.4.4 On one round

If the input for a round consists of four equal states (a, b, c, d) for which the message blocks that
preserve the state are known, then we can preserve the state of one round. For example, in the
first round, the permutation σ is the identity, we use the fixed point (a, b, c, d) which is fixed

78

Cryptanalysis of Hash Functions

under the message blocks m1, m2. So we set all even numbered blocks m2i = m1 and all odd
numbered blocks m2i+1 = m2. We set all input states v0, . . . , v15 as a, b, c, d, . . . , a, b, c, d. Now
applying the column step of the round function will preserve the states, then the input for the
diagonal step is equal to the input. Therefore, as we use the message blocks m1, m2 we will end
in the same state. Thus we find a fixed point for the round function.
In the second round, σ1 is used, and then four message blocks which should be inserted in the
column step, will be inserted in the diagonal step. This could be obtained by finding a fixed
point with m1 = m2. Now our algorithm is defined to choose b and b∗, we can not start with
choosing m1 and m2. Therefore, we ran a program to find such message blocks, but the program
did not give any result.

4.4.5 On the compression function

The authors state that a fixed point for the compression function of BLAKE–256 can be found
with effort approximately 2192 instead of 2256 ideally. For this they use that one can compute h
such that:

h0 ← h0 ⊕ s0 ⊕ v0 ⊕ v8

h1 ← h1 ⊕ s1 ⊕ v1 ⊕ v9

h2 ← h2 ⊕ s2 ⊕ v2 ⊕ v10

h3 ← h3 ⊕ s3 ⊕ v3 ⊕ v11

h4 ← h4 ⊕ s0 ⊕ v4 ⊕ v12

h5 ← h5 ⊕ s1 ⊕ v5 ⊕ v13

h6 ← h6 ⊕ s2 ⊕ v6 ⊕ v14

h7 ← h7 ⊕ s3 ⊕ v7 ⊕ v15.

If we consider the case where no salt is used (s = 0), then we need to find v such that v0 =
v8, v1 = v9, . . . , v7 = v15, which gives 2256 possible matrices. We also need that the third line
is (c0, c1, c2, c3) since s = 0 and since we use t0 and t1 twice, we need v12 = v13 ⊕ c4 ⊕ c5 and
v14 = v15 ⊕ c6 ⊕ c7. So if we compute the round function backward, we find a fixed point with
effort

24·32 · 22·32 = 2128264 = 2192.

This method does not provide a distinguisher, since for a distinguisher we should approach the
compression function as a blackbox, and here we use the internal mechanics of the compression
function.

4.4.6 Bounds on the probability of DC’s for BLAKE

Aumasson et. al. also worked on the bounds on the probability of differential characteristics
(DC’s) for ARX algorithms [44]. They use the notations of Lipmaa and Moriai [15], we will
summarize all the notations we reuse.
The differential probability of addition modulo 2n is defined as

DP+[δ] = DP+[α, β→ γ] = Pr
x,y
[(x + y)⊕ ((x⊕ α) + (y⊕ β)) = γ].

Nieke Aerts 79

Chapter 4: BLAKE

Given the differences α and β we define the maximum differential probability over all γ as

DP+
max[α, β] = max

γ
(DP+[α, β→ γ]).

Given only β we define the maximum differential probability over all α and γ as

DP+
2 max[α] = max

β,γ
(DP+[α, β→ γ]).

Lipmaa and Moriai give efficient algorithms to compute these three values.
Now we use this to find bounds for differential characteristics of BLAKE. For this we estimate the
maximum probabilities that modular addition can be replaced by XOR.
First, if only one of the terms has a difference.
For each ∆ under one addition we find

DP+[∆, 0→ ∆] = DP+
max[0, ∆] = 2−−||∆||.

It is easy to see that it is possible to achieve γ = ∆. That this has probability is 2−−||∆|| can be
concluded since modular addition can be replaced by XOR if there are no carry’s, but this does
not hold for the most significant bit (MSB), so for now we let the MSB of all differences be zero7.
That linearization of the modular addition is optimal follows from the results of Lipmaa and
Moriai [15], we follow Algorithm 3 and we see that γ = ∆ attains the maximum.

On one G

In one G there are only two message blocks inserted, mi, mj. We can distinguish the following
four cases for the possible differences in the message blocks. We consider the original G.

• ∆i 6= 0 ∧ ∆j = 0 The difference is introduced in the first step, preferably the difference is
canceled in this step, since otherwise it would proceed to step three which will decrease
the probability. Therefore, we choose ∆a = ∆mi, now we have two active additions, a + b
and (a + b) + mi. Therefore we find highest probability 2−−2||∆i ||.

• ∆i = 0 ∧ ∆j 6= 0 The differences are introduced in the second half of G, we want to cancel
these differences. So we need that ∆a∗ cancels ∆j. But the difference in a should not
spread to the other variables, since a difference proceeding through step 3 will decrease
the probability. Therefore we choose ∆a = ∆d = ∆j. There are 4 active additions, and the
highest probability is 2−−4||∆i ||.

• ∆i = ∆j 6= 0 The highest probability is achieved when ∆d = ∆i. Now in the first step
we only have one active addition since a + b is computed first, without active addition
and then (a + b) + mi which is the first active addition. Then in the second half of G
the computation of a contains two active additions. In total three active additions and
therefore we find highest probability 2−−3||∆i ||.

• 0 6= ∆i 6= ∆j 6= 0 Aumasson et. al. state that, for the original G, if ∆d = ∆i the success
probability is

2−−2||∆i ||−−||α|| · DP+
max[∆i, ∆j]

where α is the difference the maximizes DP+
max[∆i, ∆j].

Since in step 1 we use DP+
max[0, ∆i → ∆i] = 2−−||∆i ||, in step 2 the difference will vanish, so

7If the MSB of ∆ is 1, we replace 2−−||∆|| with 2−−||∆||+1

80

Cryptanalysis of Hash Functions

the next active addition is found in step 5. Here we first use DP+[∆i, 0 → ∆i] = 2−−||∆i ||

for (a + b) and then DP+[∆i, ∆j → α] = DP+
max[∆i, ∆j] for (a + b) + mj. Then in step 7 we

use DP+
max[0, α≫8→ α≫8] = 2−−||α≫8|| = 2−−||α||.

With this method we end in a state where ∆a 6= 0, ∆b 6= 0, ∆c 6= 0, ∆d 6= 0 unless we are in
a special case8. The highest probability to end in a zero difference state (which also was
the case in the above three cases), is achieved with ∆a = ∆mj −−∆i and ∆d = ∆j. Then
we have four active additions:

a = (a + b) + mi
a = (a + b) + mj

for two of these there are two elements with differences, since both a and the message
blocks contain a difference. The additions in step 3 and 7 are not active since the differ-
ences are canceled in step 2 and 5. Now we need

DP+[∆j −−∆i, ∆i → ∆j] = 2−−||∆i ||−−||∆j−−∆i ||.

The proof can be found in Appendix C.
Thus we find highest success probability 2−−||∆i ||−−2||∆j−−∆i ||−−3||∆j ||.

On one round

Each round we apply G eight times. First we will discuss the column step, then the diagonal
step. Note that r represents the round, r = 0, . . . , 9.

Column Step In the column step we use eight message blocks for the four applications of G.
For each time G is applied we can bound the success probability using the results of Section 4.4.6.
So for Gi, where i = 0, . . . , 3, applied to the states using message blocks mσr(2i), mσr(2i+1), we find
the bound bci for the success probability:

bci =


2−−2||∆σr(2i) || if ||∆σr(2i+1)|| = 0
2−−4||∆σr(2i+1) || if ||∆σr(2i)|| = 0
2−−2||∆σr(2i) ||DP+

max[σr(2i), σr(2i + 1)] else.

Note that we have used the following two properties to estimate the bound when both message
blocks have a difference

∆i = ∆j ⇒ DP+
max[∆i, ∆j] = 2−−||∆i ||

∆i 6= ∆j ⇒ 2−−||α||DP+
max[∆i, ∆j] ≤ DP+

max[∆i, ∆j].

Diagonal Step In the diagonal step we use the other eight message blocks for the four ap-
plications of G. For each time G is applied we can bound the success probability using the
results of Section 4.4.6. So for Gi, where i = 4, . . . , 7, applied to the states using message blocks

8For example when the difference in a is canceled, i.e. ∆i = 232 −−∆j.

Nieke Aerts 81

Chapter 4: BLAKE

mσr(2i), mσr(2i+1), we find the bound bdi for the success probability:

bdi =


2−−2||∆σr(2i) || if ||∆σr(2i+1)|| = 0
2−−4||∆σr(2i+1) || if ||∆σr(2i)|| = 0
2−−2||∆σr(2i) ||DP+

max[σr(2i), σr(2i + 1)] else.

Product Now that we have a bound for the column step and for the diagonal step we can
combine this to find a bound b(1) for one round.

b(1) = bci · bdi

and this can be extended to r rounds:

b(r) =
r

∏
i=0

bci · bdi.

This bound is arguably loose, in example, we assumed that the additions in step 3 and 7 are
never active and that the input values always have ideal differences, which both might be rare
events.

4.5 Conclusion

The analysis on BLAKE so far does not indicate that this hash function is not secure. There are
some assumptions made on BLAKE (by its authors), which are shown to be incorrect in this thesis.
Neither one of these changes threatens the security of the full function at this time.
For example, for the fact that the state (∆, 0, ∆′, 0) can be reached after one G it is proven that
it will not lead to an attack on the full function. Secondly, the fixed points do not give a
distinguisher, so they can not (yet) be used to attack BLAKE.
The simplicity of the design makes it easier to analyze. Therefore the explanations that an attack
can not be extended to more rounds, or the full function, are reasonable to be right.

82

Chapter 5

Comparison between Blake and Shabal

5.1 Hardware requirements & speed

Since our implementations are not suitable for comparing amounts of ROM and RAM, this sec-
tions is based on the round reviews of NIST [53, 26].
Both Shabal and BLAKE are among the best performers of the SHA-3 contest concerning the
hashing of long messages. For very short messages BLAKE performs the best of all contenders,
Shabal is not as good as the others in this respect.
Concerning speed, Shabal is among the top performers, and in constrained environments, BLAKE
is too. BLAKE–512, which produces the 512–bit digest, is optimized for 64–bit processors and per-
forms significantly worse on a 32–bit processor.
Both Shabal and BLAKE require low amounts of ROM and provide average performance in
throughput–to–area ratio. However, BLAKE has a structure that allows for flexible designs.

5.2 Security

Both Shabal and BLAKE were subjected to different types of cryptanalyses. We will first summa-
rize some of the differences and agreements. Afterwards we will discuss whether the cryptanal-
ysis can be compared.

• BLAKE is an ARX algorithm1 and Shabal also contains multiplication by 3 (U), multiplica-
tion by 5 (V) and the AND operator.

• Shabal is a so–called wide–pipe algorithm, BLAKE is a narrow-pipe algorithm. The dif-
ference is that for Shabal the output is a small part of the internal state, and for BLAKE
the output the internal state compressed to half the size, thus the latter contains all the
information.

• Both algorithms are based on a permutation, the permutation of Shabal is keyed with a
message block and part of the inner state, the permutation of BLAKE is keyed with two
message blocks.

• Both Shabal and BLAKE can be reduced to less complex versions, which makes it easy to
see if a property is very important for the security of the function.

1ARX algorithm means that the algorithm consists only of the operations: Addition, Rotation and eXclusive OR

83

Chapter 5: Comparison between Blake and Shabal

Indifferentiability The most recent proof of the authors of Shabal takes into account that the
permutation is biased. We do not totally understand the proof, but let us assume it is correct.
Then it does show that Shabal is secure, with the differentiators that have been proven to exist,
until now. Thus, the permutation has a large responsibility, and during the last years more and
more irregularities were found, so the question is, if there will be better differentiators in the
future.
Indifferentiability has not yet proven to be useful for hash functions, and proofs are always
based on many assumptions on the inner primitive.
On the other hand, differentiators are making their way into cryptanalysis of hash functions.
Mainly because the irregularities might be a start for another attack (e.g. a preimage attack).
For Shabal there exist distinguishers on the inner primitive, the permutation, but these have not
yet led to an attack.
The authors of BLAKE state that the counter is important, since it assures to consecutive com-
pressions differ. Therefore the inputs of the iteration mode are prefix–free and this guarantees
that BLAKE is indifferentiable from a random oracle as long as the compression function is as-
sumed ideal [8]. The conclusion is that if BLAKE is in some way not secure, it must be due to the
compression function.

Fixed Points For both the inner primitive of Shabal and BLAKE, the permutation respectively
the round function, there are fixed points that are easily generated. In both cases this does not
apply for the full function, as the starting state may not be chosen.
The authors of Shabal claim that there exist no trivial fixed points for the compression fucntion
due to the counter.
The authors of BLAKE state that fixed points for the compression function can be found with
effort 2192 instead of 2256 ideally, but this does not lead to an attack.

Preimages For both functions it is possible to find a preimage of the inner primitive, since
both are a permutation and they do not truncate information. To extend this to the full function
makes both problems infeasible. For Shabal this is due to the truncation, the output is only the C
part of the inner state after the three final rounds. In a reduced version it is possible to find the
B and the C part, but still the A part is unknown and this is guessed correctly with probability
2−384.
In BLAKE the digest is a compressed version of the inner state. A correct guess, such that a
preimage can be computed, occurs with probability 2−512 (since the previous chaining variable
and the inner state are unknown), assuming that the salt is known to the attacker (otherwise the
probability decreases to 2−512−4·32 = 2−640).

Length Extension Attack For both functions the counter is a sufficient method to protect the
function against length extension attacks.

NIST NIST decided to progress BLAKE to the final round of the competition, due to its sim-
plicity, its speed, and its security margin.
Shabal did not progress to the final round mainly due to security concerns, the differentiators
with low complexity, that have been found for the permutation, raised concerns. The latest
proof of indifferentiability did not convince NIST that the function would remain secure.

84

Cryptanalysis of Hash Functions

Opinion NIST chose five functions out of the fourteen second round candidates to advance to
the next round. We only analyzed two of the second round candidates and we state that if we
needed to choose between those two, Shabal and BLAKE, we would choose BLAKE.
Shabal’s inner primitive, the permutation has been attacked many times, mostly by distinguish-
ers, but there are also many fixed points. The security of Shabal depends highly on the counter,
the initial values and the final rounds. Although every functions gains some security from the
initial values and possibly from the counter, the compression function itself should provide
more security than the compression function of Shabal does.
The inner primitive of BLAKE is simple compared to the inner primitive of Shabal and therefore
it is less expected to have properties that have not proven to bring down the security margin,
will be found in the near future.
For BLAKE the cryptanalysis is still advancing, while the analysis still concludes that BLAKE is
very strong against differential attacks, the latest publication shows that there might be a reason
to believe that low probability differentials not necessarily imply a high security margin against
differential attacks. This does not threaten the security of BLAKE but it might raise concerns. On
the other side, this is not only relevant for BLAKE, also for the final round candidate Skein.
There are more questions about the security of BLAKE now, than one year ago. Many crypt-
analysts are focussing on the five remaining contenders, none of which has been broken or is
computationally broken. This implies that all five will remain secure at least a little while longer.
Never before has there been so much analysis on a hash function that is not yet in use. This
induces confidence in whichever function will become the new world wide standard.

Nieke Aerts 85

Acknowledgements

First I would like to say that I really enjoyed working on this project, the hardest part was to
stop working on the project and start writing down what I did do. So along the way, I had a lot
of support from my supervisor Benne in this respect. On the contents of my thesis I had some
nice and very useful discussions with him as well.
Thanks Benne, for all the help when I was in Australia and in particular when I was back in the
Netherlands.
I really enjoyed the fact that I could work on this project at Macquarie University in Sydney. It
was nice to see that also there, they have an informal structure as we do in Eindhoven. I enjoyed
the weekly meetings. It was nice to share my ideas and get comments. Thanks for that, Josef,
Ron, Przemek, Sareh and Malin. Also, Sareh and Przemek, I would like to thank you both for
the help, the conversations and discussions outside the weekly meetings.
I would like to thank Henk, who asked Josef whether it was possible for me to join his group
during this project.
Off course I also want to thank my parents for making this trip (financially) possible and for
supporting my choices. And I would like to thank the dear friends I made in Australia who
made my time there so perfect. I would also like to thank my friends who supported me from
the Netherlands and provided me with gossip at, mostly strange, local times.

Nieke

86

Bibliography

[1] J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan, “Toy versions of BLAKE.” pub-
lished on website, 2007.

[2] NIST, “Announcing Request for Candidate Algorithm Nominations for a New Cryp-
tographic Hash Algorithm (SHA–3) Family,” Federal Register, vol. 72, pp. 62212–62220,
November 2007.

[3] J. Kelsey and B. Schneier, “Second preimages on n–bit hash functions for much less than
2n work.” Cryptology ePrint Archive, Report 2004/304, 2004. http://eprint.iacr.org/.

[4] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography. CRC Press,
1996.

[5] E. Fleischmann, C. Forler, and M. Gorski, “Classification of the SHA–3 Candidates,” 2009.

[6] R. C. Merkle, “One way hash functions and DES,” in CRYPTO ’89: Proceedings on Advances
in cryptology, (New York, NY, USA), pp. 428–446, Springer–Verlag New York, Inc., 1989.

[7] I. Damgård, “A Design Principle for Hash Functions,” in CRYPTO ’89: Proceedings of the 9th
Annual International Cryptology Conference on Advances in Cryptology, (London, UK), pp. 416–
427, Springer–Verlag, 1990.

[8] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya, “Merkle–Damgård revisited: How to con-
struct a hash function,” in Adcances in Cryptology – CRYPTO 2005, Lecture Notes in Computer
Science, vol. 3621/2005, pp. 430–448, Springer–Verlag, 2005.

[9] U. Maurer, R. Renner, and C. Holenstein, “Indifferentiability, Impossibility Results on Re-
ductions, and Applications to the Random Oracle Methodology,” in Theory of Cryptography
Conference – TCC 2004 (Moni Naor, ed.), vol. 2951 of Lecture Notes in Computer Science,
pp. 21–39, Springer–Verlag, Feb. 2004.

[10] M. Matsui and A. Yamagishi, “A New Method for Known Plaintext Attack of FEAL Ci-
pher.,” in Advances in Cryptology – EUROCRYPT ’92, vol. 658/1993, pp. 81–91, 1992.

[11] M. Matsui, “Linear Cryptanalysis Method for DES Cipher,” in Advances in Cryptology –
EUROCRYPT ’93, vol. 765/1994, 1993.

[12] E. Biham and A. Shamir, “Differential Cryptanalysis of DES–like Cryptosystems,” in
CRYPTO’91, 1991.

[13] D. Coppersmith, “The Data Encryption Standard (DES) and its strength against attacks,”
IBM J. Res. Dev., vol. 38, pp. 243–250, May 1994.

[14] M. Daum, “Cryptanalysis of Hash Functions of the MD4–Family,” 2005.

87

BIBLIOGRAPHY

[15] H. Lipmaa and S. Moriai, “Efficient algorithms for computing differential properties of
addition,” in Properties of Addition, FSE 2001, pp. 336–350, Springer–Verlag, 2001.

[16] S. Indesteege and B. Preneel, “Practical collisions for EnRUPT,” in LNCS, vol. 5665, pp. 246–
259, Springer–Verlag, 2009.

[17] T. Isobe and T. Shirai, “Low–weight Pseudo Collision Attack on Shabal and Preimage At-
tack on Reduced Shabal–512.” Cryptology ePrint Archive, Report 2010/434, 2010.

[18] X. Wang and H. Yu, “How to Break MD5 and Other Hash Functions,” in EUROCRYPT,
pp. 19–35, 2005.

[19] D. Wagner, “The Boomerang Attack,” in LNCS, vol. 1636, pp. 156–170, Springer, 1999.

[20] I. Dinur and A. Shamir, “Cube Attacks on Tweakable Black Box Polynomials.” Cryptology
ePrint Archive, Report2008/385, 2008.

[21] M. Vielhaber, “Breaking One.Fivium by AIDA an Algebraic IV Differential Attack.” Cryp-
tology ePrint Archive, Report 2007/413, 2007. http://eprint.iacr.org/.

[22] M. Vielhaber, “Shamir’s “cube attack”: A Remake of AIDA, The Algebraic IV Differential
Attack.” Note on the Cube Attack, 2009.

[23] E. Biham and R. Chen, “Near–Collisions of SHA–0,” in LNCS, vol. 3152, pp. 290–305,
Springer, 2004.

[24] B. Zhu, W. Yu, and T. Wang, “A Practical Platform for Cube–Attack–like Cryptanalyses.”
Cryptology ePrint Archive, Report 2010/644, 2010.

[25] E. Bresson, A. Canteaut, B. Chevallier-Mames, C. Clavier, T. Fuhr, A. Gouget, T. Icart,
J.-F. Misarsky, M. Naya-Plasencia, P. Paillier, T. Pornin, J.-R. Reinhard, C. Thuillet, and
M. Videau, “Shabal, a Submission to NIST‘s Cryptographic Hash Algorithm Competition.”
Submission to NIST, 2008.

[26] NIST, “Status report on the second round of the SHA–3 Cryptographic Hash Competition,”
February 2011.

[27] J.-P. Aumasson, “On the pseudorandomness of Shabal’s keyed permutation,” 2009.

[28] L. R. Knudsen, K. Matusiewicz, and S. S. Thomsen, “Observations on the Shabal keyed
permutation,” 2009.

[29] J.-P. Aumasson, A. Mashatan, and W. Meier, “More on Shabal’s permutation,” 2009.

[30] E. Bresson, A. Canteaut, B. Chevallier-Mames, C. Clavier, T. Fuhr, A. Gouget, T. Icart,
J.-F. Misarsky, M. Naya-Plasencia, P. Paillier, T. Pornin, J.-R. Reinhard, C. Thuillet, and
M. Videau, “Indifferentiability with Distinguishers: Why Shabal Does Not Require Ideal
Ciphers.” Cryptology ePrint Archive, Report 2009/199, 2009.

[31] G. V. Assche, “A rotational distinguisher on Shabal’s keyed permutation and its impact on
the security proofs,” 2010.

[32] P. Novotney, “Distinguisher for Shabal’s Permutation Function.” Cryptology ePrint
Archive, Report 2010/398, 2010.

[33] J.-P. Aumasson, “Observation on Shabal.” NIST mailing list, 2010.

[34] E. Bresson, A. Canteaut, B. Chevallier-Mames, C. Clavier, T. Fuhr, A. Gouget, T. Icart,
J.-F. Misarsky, M. Naya-Plasencia, P. Paillier, T. Pornin, J.-R. Reinhard, C. Thuillet, and
M. Videau, “Internal Distinguishers in Indifferentiable Hashing: The Shabal Case.” , 2010.

88

Cryptanalysis of Hash Functions

[35] M. Naya-Placensia, “Chiffrement par flot et fonctions de hachage: conception et cryptanal-
yse.” PhD thesis, 2009.

[36] D. Gligoroski, “Narrow–pipe SHA–3 candidates differ significantly from ideal random
functions defined over big domains.” NIST mailing list, 2010, 2010.

[37] M. S. Turan and E. Uyan, “Practical Near–Collisions for Reduced Round Blake, Fugue,
Hamsi and JH.” Second SHA–3 Candidate Conference, 2010.

[38] P. Sokolowski, “Rotational and Shift Cryptanalysis of (Modified) Versions of SHA–3 Can-
didates,” 2010.

[39] P. alain Fouque, G. Leurent, and P. Nguyen, “Automatic Search of Differential Path in
MD4.” Cryptology ePrint Archive: Report 2007/206, 2007.

[40] X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu, “Cryptanalysis of the Hash Functions MD4
and RIPEMD.,” in EUROCRYPT, pp. 1–18, 2005.

[41] D. Tonien, “Some Algebraic properties of SHA–1 and collision test for iterative hash func-
tions.” Not published.

[42] H. Yu, J. Chen, K. jia, , and X. Wang, “Near–Collision Attack on the Step–Reduced Com-
pression Function of Skein–256,” 2011.

[43] J.-P. Aumasson, L. Henzen, W. Meier, and R. C. W. Phan, “SHA–3 proposal"BLAKE.” Sub-
mission to NIST, 2008.

[44] J.-P. Aumasson, J. Guo, S. Knellwolf, K. Matusiewicz, and W. Meier, “Differential and invert-
ibility properties of BLAKE (full version).” Cryptology ePrint Archive, Report 2010/043,
2010.

[45] L. Ji and X. Liangyu, “Attacks on Round–Reduced BLAKE.” Cryptology ePrint Archive,
Report 2009/238, 2009.

[46] J. Guo and K. Matusiewicz, “Round–Reduced Near–Collisions of BLAKE–32.” sent over
NIST SHA–3 mailing list, 2009.

[47] M. Ming, H. Qiang, and S. Zeng, “Security analysis of BLAKE–32 based on differential
properties (abstract).” ICCIS 2010, 2010.

[48] J. Vidali, P. Nose, and E. Pas̆alic, “Collisions for variants of the BLAKE hash function.” In
Proceedings of Information Processing Letters, 2010.

[49] B. Su, W. Wu, S. Wu, and L. Dong, “Near–Collisions on the Reduced–Round Compression
Functions of Skein and BLAKE,” 2010.

[50] A. Biryukov, I. Nikolic, and A. Roy, “Boomerang attacks on BLAKE–32.” (slides) FSE 2011,
2011.

[51] J.-P. Aumasson, G. Leurent, W. Meier, F. Mendel, N. Mouha, R. C.-W. Phan, Y. Sasaki, and
P. Susil, “Tuple cryptanalysis of ARX with application to BLAKE and Skein..” ECRYPT2
Hash Workshop 2011, 2011.

[52] O. Dunkelman and D. Khovratovich, “Iterative differentials, symmetries, and message
modification in BLAKE–256.” ECRYPT2 Hash Workshop 2011, 2011.

[53] A. Regenscheid, R. Perlner, S. jen Chang, J. Kelsey, M. Nandi, and S. Paul, “Status report
on the first round of the SHA–3 Cryptographic Hash Competition,” February 2011.

Nieke Aerts 89

Appendix A

Notations

|| Concatenation (x||y: append y to x)
⊕ XOR
≫ Right-Rotation
≪ Left-Rotation
� Right-Shift
� Left-Shift
+ Modular Addition (mostly mod 232)
∨ OR operator
∧ AND operator
x Negation of x

Shabal

• R is the Compression/Round Function.

• P is the Permutation.

• A, B, C, m are the inputs for the permutation.

• A[i] The ith word of the array A.

• Aj[i] The jth version of the ith word, we start with A0 = A, after changing it in step 2 of
the permutation, we call it A1.

• B[i] The ith word of the array B.

• Bj[i] The jth version of the ith word, we start with B−1 = B, after changing it in step 1 of
the permutation, we call it B0.

BLAKE

• C is the Compression Function.

• R is the Round Function.

• G is the Inner Primitive.

• h, m, s, a is the input for the compression function.

90

Cryptanalysis of Hash Functions

• The 4× 4 word matrix is the input for the round function.

• a, b, c, d, i, r is the input for the inner primitive, where i represents the step within the round
and r the round.

• Gm1,m2(a, b, c, d) represents the inner primitive applied to (a, b, c, d) using message blocks
m1 and m2.

Nieke Aerts 91

Appendix B

on Shabal

B.1 Differential Attack of Novotney

The rounds of the second step of the permutation of Shabal are given below. In the first 26 steps
the active elements are colored red. Recall that A0[10] and B0[7] start with a difference.
At round 26 we have differences only in A3[2], B2[7] and B2[10] with probability 1/8

round

0 A1[0] = 3(A0[0]⊕ 5(A0[11]≪15)⊕ C[8])⊕ B0[13]⊕ (B0[9] ∧ B0[6])⊕m[0]
B1[0] = B0[0]⊕ A1[0]

1 A1[1] = 3(A0[1]⊕ 5(A1[0]≪15)⊕ C[9])⊕ B0[14]⊕ (B0[10] ∧ B0[7])⊕m[1]
B1[1] = B0[1]⊕ A1[1]

2 A1[2] = 3(A0[2]⊕ 5(A1[1]≪15)⊕ C[10])⊕ B0[15]⊕ (B0[11] ∧ B0[8])⊕m[2]
B1[2] = B0[2]⊕ A1[2]

3 A1[3] = 3(A0[3]⊕ 5(A1[2]≪15)⊕ C[11])⊕ B1[0]⊕ (B0[12] ∧ B0[9])⊕m[3]
B1[3] = B0[3]⊕ A1[3]

4 A1[4] = 3(A0[4]⊕ 5(A1[3]≪15)⊕ C[12])⊕ B1[1]⊕ (B0[13] ∧ B0[10])⊕m[4]
B1[4] = B0[4]⊕ A1[4]

5 A1[5] = 3(A0[5]⊕ 5(A1[4]≪15)⊕ C[13])⊕ B1[2]⊕ (B0[14] ∧ B0[11])⊕m[5]
B1[5] = B0[5]⊕ A1[5]

6 A1[6] = 3(A0[6]⊕ 5(A1[5]≪15)⊕ C[14])⊕ B1[3]⊕ (B0[15] ∧ B0[12])⊕m[6]
B1[6] = B0[6]⊕ A1[6]

7 A1[7] = 3(A0[7]⊕ 5(A1[6]≪15)⊕ C[15])⊕ B1[4]⊕ (B1[0] ∧ B0[13])⊕m[7]
B1[7] = B0[7]⊕ A1[7]

8 A1[8] = 3(A0[8]⊕ 5(A1[7]≪15)⊕ C[0])⊕ B1[5]⊕ (B1[1] ∧ B0[14])⊕m[8]
B1[8] = B0[8]⊕ A1[8]

9 A1[9] = 3(A0[9]⊕ 5(A1[8]≪15)⊕ C[1])⊕ B1[6]⊕ (B1[2] ∧ B0[15])⊕m[9]
B1[9] = B0[9]⊕ A1[9]

10 A1[10] = 3(A0[10]⊕ 5(A1[9]≪15)⊕ C[2])⊕ B1[7]⊕ (B1[3] ∧ B3[0])⊕m[10]
B1[10] = B0[10]⊕ A1[10]

92

Cryptanalysis of Hash Functions

round

11 A1[11] = 3(A0[11]⊕ 5(A1[10]≪15)⊕ C[3])⊕ B1[8]⊕ (B1[4] ∧ B1[1])⊕m[11]
B1[11] = B0[11]⊕ A1[11]

12 A2[0] = 3(A1[0]⊕ 5(A1[11]≪15)⊕ C[4])⊕ B1[9]⊕ (B1[5] ∧ B1[2])⊕m[12]
B1[12] = B0[12]⊕ A2[0]

13 A2[1] = 3(A1[1]⊕ 5(A2[0]≪15)⊕ C[5])⊕ B1[10]⊕ (B1[6] ∧ B1[3])⊕m[13]
B1[13] = B0[13]⊕ A2[1]

14 A2[2] = 3(A1[2]⊕ 5(A2[1]≪15)⊕ C[6])⊕ B1[11]⊕ (B1[7] ∧ B1[4])⊕m[14]
B1[14] = B0[14]⊕ A2[2]

15 A2[3] = 3(A1[3]⊕ 5(A2[2]≪15)⊕ C[7])⊕ B1[12]⊕ (B1[8] ∧ B1[5])⊕m[15]
B1[15] = B0[15]⊕ A2[3]

16 A2[4] = 3(A1[4]⊕ 5(A2[3]≪15)⊕ C[8])⊕ B1[13]⊕ (B1[9] ∧ B1[6])⊕m[0]
B2[0] = B1[0]⊕ A2[4]

17 A2[5] = 3(A1[5]⊕ 5(A2[4]≪15)⊕ C[9])⊕ B1[14]⊕ (B1[10] ∧ B1[7])⊕m[1]
B2[1] = B1[1]⊕ A2[5]

18 A2[6] = 3(A1[6]⊕ 5(A2[5]≪15)⊕ C[10])⊕ B1[15]⊕ (B1[11] ∧ B1[8])⊕m[2]
B2[2] = B1[2]⊕ A2[6]

19 A2[7] = 3(A1[7]⊕ 5(A2[6]≪15)⊕ C[11])⊕ B2[0]⊕ (B1[12] ∧ B1[9])⊕m[3]
B2[3] = B1[3]⊕ A2[7]

20 A2[8] = 3(A1[8]⊕ 5(A2[7]≪15)⊕ C[12])⊕ B2[1]⊕ (B1[13] ∧ B1[10])⊕m[4]
B2[4] = B1[4]⊕ A2[8]

21 A2[9] = 3(A1[9]⊕ 5(A2[8]≪15)⊕ C[13])⊕ B2[2]⊕ (B1[14] ∧ B1[11])⊕m[5]
B2[5] = B1[5]⊕ A2[9]

22 A2[10] = 3(A1[10]⊕ 5(A2[9]≪15)⊕ C[14])⊕ B2[3]⊕ (B1[15] ∧ B1[12])⊕m[6]
B2[6] = B1[6]⊕ A2[10]

23 A2[11] = 3(A1[11]⊕ 5(A2[10]≪15)⊕ C[15])⊕ B2[4]⊕ (B2[0] ∧ B1[13])⊕m[7]
B2[7] = B1[7]⊕ A2[11]

24 A3[0] = 3(A2[0]⊕ 5(A2[11]≪15)⊕ C[0])⊕ B2[5]⊕ (B2[1] ∧ B1[14])⊕m[8]
B2[8] = B1[8]⊕ A3[0]

25 A3[1] = 3(A2[1]⊕ 5(A3[0]≪15)⊕ C[1])⊕ B2[6]⊕ (B2[2] ∧ B1[15])⊕m[9]
B2[9] = B1[9]⊕ A3[1]

26 A3[2] = 3(A2[2]⊕ 5(A3[1]≪15)⊕ C[2])⊕ B2[7]⊕ (B2[3] ∧ B1[0])⊕m[10]
B2[10] = B1[10]⊕ A3[2]

27 A3[3] = 3(A2[3]⊕ 5(A3[2]≪15)⊕ C[3])⊕ B2[8]⊕ (B2[4] ∧ B2[1])⊕m[11]
B2[11] = B1[11]⊕ A3[3]

28 A3[4] = 3(A2[4]⊕ 5(A3[3]≪15)⊕ C[4])⊕ B2[9]⊕ (B2[5] ∧ B2[2])⊕m[12]
B2[12] = B1[12]⊕ A3[4]

29 A3[5] = 3(A2[5]⊕ 5(A3[4]≪15)⊕ C[5])⊕ B2[10]⊕ (B2[6] ∧ B2[3])⊕m[13]
B2[13] = B1[13]⊕ A3[5]

30 A3[6] = 3(A2[6]⊕ 5(A3[5]≪15)⊕ C[6])⊕ B2[11]⊕ (B2[7] ∧ B2[4])⊕m[14]
B2[14] = B1[14]⊕ A3[6]

Nieke Aerts 93

Appendix B: on Shabal

round

31 A3[7] = 3(A2[7]⊕ 5(A3[6]≪15)⊕ C[7])⊕ B2[12]⊕ (B2[8] ∧ B2[5])⊕m[15]
B2[15] = B1[15]⊕ A3[7]

32 A3[8] = 3(A2[8]⊕ 5(A3[7]≪15)⊕ C[8])⊕ B2[13]⊕ (B2[9] ∧ B2[6])⊕m[0]
B3[0] = B2[0]⊕ A3[8]

33 A3[9] = 3(A2[9]⊕ 5(A3[8]≪15)⊕ C[9])⊕ B2[14]⊕ (B2[10] ∧ B2[7])⊕m[1]
B3[1] = B2[1]⊕ A3[9]

34 A3[10] = 3(A2[10]⊕ 5(A3[9]≪15)⊕ C[10])⊕ B2[15]⊕ (B2[11] ∧ B2[8])⊕m[2]
B3[2] = B2[2]⊕ A3[10]

35 A3[11] = 3(A2[11]⊕ 5(A3[10]≪15)⊕ C[11])⊕ B3[0]⊕ (B2[12] ∧ B2[9])⊕m[3]
B3[3] = B2[3]⊕ A3[11]

36 A4[0] = 3(A3[0]⊕ 5(A3[11]≪15)⊕ C[12])⊕ B3[1]⊕ (B2[13] ∧ B2[10])⊕m[4]
B3[4] = B2[4]⊕ A4[0]

37 A4[1] = 3(A3[1]⊕ 5(A4[0]≪15)⊕ C[13])⊕ B3[2]⊕ (B2[14] ∧ B2[11])⊕m[5]
B3[5] = B2[5]⊕ A4[1]

38 A4[2] = 3(A3[2]⊕ 5(A4[1]≪15)⊕ C[14])⊕ B3[3]⊕ (B2[15] ∧ B2[12])⊕m[6]
B3[6] = B2[6]⊕ A4[2]

39 A4[3] = 3(A3[3]⊕ 5(A4[2]≪15)⊕ C[15])⊕ B3[4]⊕ (B3[0] ∧ B2[13])⊕m[7]
B3[7] = B2[7]⊕ A4[3]

40 A4[4] = 3(A3[4]⊕ 5(A4[3]≪15)⊕ C[0])⊕ B3[5]⊕ (B3[1] ∧ B2[14])⊕m[8]
B3[8] = B2[8]⊕ A4[4]

41 A4[5] = 3(A3[5]⊕ 5(A4[4]≪15)⊕ C[1])⊕ B3[6]⊕ (B3[2] ∧ B2[15])⊕m[9]
B3[9] = B2[9]⊕ A4[5]

42 A4[6] = 3(A3[6]⊕ 5(A4[5]≪15)⊕ C[2])⊕ B3[7]⊕ (B3[3] ∧ B3[0])⊕m[10]
B3[10] = B2[10]⊕ A4[6]

43 A4[7] = 3(A3[7]⊕ 5(A4[6]≪15)⊕ C[3])⊕ B3[8]⊕ (B3[4] ∧ B3[1])⊕m[11]
B3[11] = B2[11]⊕ A4[7]

44 A4[8] = 3(A3[8]⊕ 5(A4[7]≪15)⊕ C[4])⊕ B3[9]⊕ (B3[5] ∧ B3[2])⊕m[12]
B3[12] = B2[12]⊕ A4[8]

45 A4[9] = 3(A3[9]⊕ 5(A4[8]≪15)⊕ C[5])⊕ B3[10]⊕ (B3[6] ∧ B3[3])⊕m[13]
B3[13] = B2[13]⊕ A4[9]

46 A4[10] = 3(A3[10]⊕ 5(A4[9]≪15)⊕ C[6])⊕ B3[11]⊕ (B3[7] ∧ B3[4])⊕m[14]
B3[14] = B2[14]⊕ A4[10]

47 A4[11] = 3(A3[11]⊕ 5(A4[10]≪15)⊕ C[7])⊕ B3[12]⊕ (B3[8] ∧ B3[5])⊕m[15]
B3[15] = B2[15]⊕ A4[11]

94

Appendix C

on BLAKE

C.1 Initial Values and Constants

BLAKE–256

BLAKE–256 starts with the same initial values as SHA–2:

IV0 = 6A09E667 IV1 = BB67AE85
IV2 = 3C6EF372 IV3 = A54FF53A
IV4 = 510E527F IV5 = 9B05688C
IV6 = 1F83D9AB IV7 = 5BE0CD19.

BLAKE-256 uses the 16 constants:

c0 = 243F6A88 c1 = 85A308D3
c2 = 13198A2E c3 = 03707344
c4 = A4093822 c5 = 299F31D0
c6 = 082EFA98 c7 = EC4E6C89
c8 = 452821E6 c9 = 38D01377
c10 = BE5466CF c11 = 34E90C6C
c12 = C0AC29B7 c13 = C97C50DD
c14 = 3F84D5B5 c15 = B5470917.

BLAKE–224

BLAKE–224 uses the same constants as BLAKE–256 and starts with the following initial values:

IV0 = C1059ED8 IV1 = 367CD507
IV2 = 3070DD17 IV3 = F70E5939
IV4 = FFC00B31 IV5 = 68581511
IV6 = 64F98FA7 IV7 = BEFA4FA4.

95

Appendix C: on BLAKE

BLAKE–512

The initial value ofBLAKE-512 is the same as for SHA-512:

IV0 = 6A09E667F3BCC908 IV1 = BB67AE8584CAA73B
IV2 = 3C6EF372FE94F82B IV3 = A54FF53A5F1D36F1
IV4 = 510E527FADE682D1 IV5 = 9B05688C2B3E6C1F
IV6 = 1F83D9ABFB41BD6B IV7 = 5BE0CD19137E2179.

BLAKE-512 uses the 16 constants:

c0 = 243F6A8885A308D3 c1 = 13198A2E03707344
c2 = A4093822299F31D0 c3 = 082EFA98EC4E6C89
c4 = 452821E638D01377 c5 = BE5466CF34E90C6C
c6 = C0AC29B7C97C50DD c7 = 3F84D5B5B5470917
c8 = 9216D5D98979FB1B c9 = D1310BA698DFB5AC
c10 = 2FFD72DBD01ADFB7 c11 = B8E1AFED6A267E96.
c12 = BA7C9045F12C7F99 c13 = 24A19947B3916CF7
c14 = 0801F2E2858EFC16 c15 = 636920D871574E69

BLAKE–384

BLAKE–384 uses the same constants as BLAKE–512 and starts with the following initial values:

IV0 = CBBB9D5DC1059ED8 IV1 = 629A292A367CD507
IV2 = 9159015A3070DD17 IV3 = 152FECD8F70E5939
IV4 = 67332667FFC00B31 IV5 = 8EB44A8768581511
IV6 = DB0C2E0D64F98FA7 IV7 = 47B5481DBEFA4FA4.

C.2 Impossible States

Recall that we proved:

∆a′ = 0 ⇒ ∆d′ 6= 0 ∆c′ = 0 ⇒ ∆b′ 6= 0 ∧ ∆d′ 6= 0
∆b′ = 0 ⇒ ∆c′ 6= 0 ∆d′ = 0 ⇒ ∆a′ 6= 0 ∧ ∆c′ 6= 0.

for the process of one G and the start states are equal.
Now we easily conclude that we will never have only one of (a, b, c, d) with a difference. And
from the equations above we conclude:

(·, ·, 0, 0) ⇒ c 6= 0, d 6= 0
(·, 0, 0, ·) ⇒ a 6= 0, d 6= 0
(0, ·, ·, 0) ⇒ b 6= 0, c 6= 0.

96

Cryptanalysis of Hash Functions

C.3 Proofs on output (∆, 0, ∆′, 0)

We stated that if the following equations are satisfied, we will find output (∆, 0, ∆′, 0).

∆a∗ = ∆m1 (C.1)
∆d∗ = ∆m1 ≫16 (C.2)
∆c∗ = ∆m1 ≫16 (C.3)
∆b∗ = ∆m1 ≫28 (C.4)
∆a′ = ∆m1 + ∆m1 ≫28 +∆m2 (C.5)
∆d′ = (∆m1 ≫16 ⊕(∆m1 + ∆m1 ≫28 +∆m2))≫8 (C.6)
∆c′ = ∆m1 ≫16 (C.7)
∆b′ = (∆m1 ≫28 ⊕∆m1 ≫16)≫7 . (C.8)

Note that we use m1 ≫4= m1 and m1 + m2 = 232 in all the following, and Gm1,m2(a, b, c, d)
denotes the round function G applied to (a, b, c, d) using the message blocks m1 and m2.

When three input variables are 0

Lemma 8. If precisely three of the four input values (a, b, c, d) are zero, and the fourth is a power of 2,
then

Gm1,m2(a, b, c, d)− Gm′1,m′2
(a, b, c, d) = (∆, 0, ∆′, 0)

with probability 1/2.

Proof. We find
Gm1,m2(a, b, c, d)− Gm′1,m′2

(a, b, c, d) = (∆, 0, ∆′, 0)

if and only if Equations 4.1 to 4.8 hold.
Let (a, b, c, d) = (2j, 0, 0, 0), in total we have 32 different options, but there are only four options
which give different restrictions. Since m1 is rotatable over four, j = 0 and j = 4 will give the
same restrictions.
We state that if ∆m1j mod 4 = 0 Equations 4.1 to 4.8 hold.

∆a∗ = ∆m1 since there is no carry1 due to ∆m1j mod 4 = 0.
∆d∗ = ∆m1 ≫16 .
∆c∗ = ∆m1 ≫16 since c = 0.
∆b∗ = ∆m1 ≫28 .
∆a′ = ∆m1 + ∆m1 ≫28 +∆m2 = ∆m1 since ∆m2 = 232 − ∆m1 and

∆m1 = ∆m1 ≫4 .
∆d′ = (∆m1 ≫16 ⊕∆m1)≫8= 0 since ∆m1 = ∆m1 ≫4 .
∆c′ = ∆m1 ≫16 since ∆d′ = 0.
∆b′ = (∆m1 ≫28 ⊕∆m1 ≫16)≫7= 0 since ∆m1 = ∆m1 ≫4 .

We conclude that we find ∆m1j mod 4 = 0 with probability 1/2, and thus if a = 2j we find

Gm1,m2(a, b, c, d)− Gm′1,m′2
(a, b, c, d) = (∆, 0, ∆′, 0)

with probability 1/2.

Nieke Aerts 97

Appendix C: on BLAKE

Case: (a, b, c, d) = (0, 2j, 0, 0) We find

Gm1,m2(a, b, c, d)− Gm′1,m′2
(a, b, c, d) = (∆, 0, ∆′, 0)

if and only if Equations C.1 to C.8 hold.
Let (a, b, c, d) = (0, 2j, 0, 0) and we state that if m1j mod 4 = 0 Equations C.1 to C.8 hold.

∆a∗ = ∆m1 since there is no carry due to m1j mod 4 = 0.
∆d∗ = ∆m1 ≫16 .
∆c∗ = ∆m1 ≫16 since c = 0.
∆b∗ = ∆m1 ≫28 .
∆a′ = ∆m1 + ∆m1 ≫28 +∆m2 = ∆m1 since ∆m2 = 232 − ∆m1 and

∆m1 = ∆m1 ≫4 .
∆d′ = (∆m1 ≫16 ⊕∆m1)≫8= 0 since ∆m1 = ∆m1 ≫4 .
∆c′ = ∆m1 ≫16 since ∆d′ = 0.
∆b′ = (∆m1 ≫28 ⊕∆m1 ≫16)≫7= 0 since ∆m1 = ∆m1 ≫4 .

We conclude that we find m1j mod 4 = 0 with probability 1/2, and thus if b = 2j we find

Gm1,m2(a, b, c, d)− Gm′1,m′2
(a, b, c, d) = (∆, 0, ∆′, 0)

with probability 1/2.

Case: (a, b, c, d) = (0, 0, 2j, 0) We find

Gm1,m2(a, b, c, d)− Gm′1,m′2
(a, b, c, d) = (∆, 0, ∆′, 0)

if and only if Equations C.1 to C.8 hold.
Let (a, b, c, d) = (0, 0, 2j, 0) and we state that if m1j mod 4 = 0 Equations C.1 to C.8 hold.

∆a∗ = ∆m1 since a = b = 0.
∆d∗ = ∆m1 ≫16 .
∆c∗ = ∆m1 ≫16 since there is no carry due to m1j mod 4 = 0.
∆b∗ = ∆m1 ≫28 .
∆a′ = ∆m1 + ∆m1 ≫28 +∆m2 = ∆m1 since ∆m2 = 232 − ∆m1 and

∆m1 = ∆m1 ≫4 .
∆d′ = (∆m1 ≫16 ⊕∆m1)≫8= 0 since ∆m1 = ∆m1 ≫4 .
∆c′ = ∆m1 ≫16 since ∆d′ = 0.
∆b′ = (∆m1 ≫28 ⊕∆m1 ≫16)≫7= 0 since ∆m1 = ∆m1 ≫4 .

We conclude that we find m1j mod 4 = 0 with probability 1/2, and thus if c = 2j we find

Gm1,m2(a, b, c, d)− Gm′1,m′2
(a, b, c, d) = (∆, 0, ∆′, 0)

with probability 1/2.

Case: (a, b, c, d) = (0, 0, 0, 2j) We find

Gm1,m2(a, b, c, d)− Gm′1,m′2
(a, b, c, d) = (∆, 0, ∆′, 0)

if and only if Equations C.1 to C.8 hold.
Let (a, b, c, d) = (0, 0, 0, 2j) and we state that if m1j mod 4 = 0 Equations C.1 to C.8 hold.

98

Cryptanalysis of Hash Functions

∆a∗ = ∆m1 since a = b = 0.
∆d∗ = ∆m1 ≫16 .
∆c∗ = ∆m1 ≫16 since c = 0.
∆b∗ = ∆m1 ≫28 .
∆a′ = ∆m1 + ∆m1 ≫28 +∆m2 = ∆m1 since ∆m2 = 232 − ∆m1 and

∆m1 = ∆m1 ≫4 .
∆d′ = (∆m1 ≫16 ⊕∆m1)≫8= 0 since ∆m1 = ∆m1 ≫4 .
∆c′ = ∆m1 ≫16 since ∆d′ = 0.
∆b′ = (∆m1 ≫28 ⊕∆m1 ≫16)≫7= 0 since ∆m1 = ∆m1 ≫4 .

We conclude that we find m1j mod 4 = 0 with probability 1/2, and thus if d = 2j we find

Gm1,m2(a, b, c, d)− Gm′1,m′2
(a, b, c, d) = (∆, 0, ∆′, 0)

with probability 1/2.

Conclusion

We showed that for all cases the probability of success is 1/2 and therefore the theorem
Lemma 9. If precisely three of the four input values (a, b, c, d) are zero, and the fourth is a power of 2,
then

Gm1,m2(a, b, c, d)− Gm′1,m′2
(a, b, c, d) = (∆, 0, ∆′, 0)

with probability 1/2.

is proven.

When two input variables are 0

Lemma 10. If precisely two of the four input values (a, b, c, d) are zero, and the other two are a power of
2, then

Gm1,m2(a, b, c, d)− Gm′1,m′2
(a, b, c, d) = (∆, 0, ∆′, 0)

with probability at least 1/4.

Nieke Aerts 99

Appendix C: on BLAKE

Case: i = j We state that Equation C.1 to C.8 hold if (∆m1)i = (∆m1)i+1 = 0 for a = b = 2i.

∆a∗ = (a1 + b1 + m1)⊕ (a2 + b2 + m′1)
= (2i+1 + m1)⊕ (2i+1 + m′1)
= (2i+1 ⊕m1)⊕ (2i+1 ⊕m′1) if (∆m1)i+1 = 0
= ∆m1

∆d∗ = a∗1 ≫16 ⊕a∗2 ≫16
= (∆m1)≫16
= ∆m1

∆c∗ = d∗1 ⊕ d∗2
= ∆m1

∆b∗ = (b1 ⊕ c∗1)≫ 12⊕ (b2 ⊕ c∗2)≫ 12
= (b1 ⊕ c∗1 ⊕ b2 ⊕ c∗2)≫ 12
= (m1 ⊕m′1)≫12
= ∆m1

∆a′ = (a∗1 + b∗1 + m2)⊕ (a∗2 + b∗2 + m′2)
=

(
(2i+1 ⊕m1) + (2i−12 ⊕ 2i−29 ⊕m1) + m2

)
⊕
(
(2i+1 ⊕m′1) + (2i−12 ⊕ 2i−29 ⊕m′1) + m′2

)
=

(
(2i+1 ⊕ 2i−12 ⊕ 2i−29) + (2m1 + m2)

)
⊕
(
(2i+1 ⊕ 2i−12 ⊕ 2i−29) + (2m′1 + m′2)

)
=

(
(2i+1 ⊕ 2i−12 ⊕ 2i−29)⊕m1

)
⊕
(
(2i+1 ⊕ 2i−12 ⊕ 2i−29)⊕ 2m′1

)
if (∆m1)i = 0

= ∆m1
∆d′ = (d∗1 ⊕ a′1)≫8 ⊕(d∗2 ⊕ a′2)≫8

= (∆d∗ ⊕ ∆a′)≫8
= (∆m1 ⊕ ∆m1)≫8
= 0

∆c′ = (c∗1 + d′1)⊕ (c∗2 + d′2)
=

(
(2i−17 ⊕m1) + (2i+1 ⊕ 2i−12 ⊕ 2i−17 ⊕ 2i−29)

)
⊕
(
(2i−17 ⊕m′1) + (2i+1 ⊕ 2i−12 ⊕ 2i−17 ⊕ 2i−29)

)
=

(
2i−16 ⊕m1 ⊕ 2i+1 ⊕ 2i−12 ⊕ 2i−29

)
⊕
(

2i−16 ⊕m′1 ⊕ 2i+1 ⊕ 2i−12 ⊕ 2i−29
)

= ∆m1
∆b′ = (b∗1 ⊕ c′1)≫7 ⊕(b∗2 ⊕ c′2)≫7

=
(
b∗1 ⊕ b∗2 ⊕ c′1 ⊕ c′2

)
≫7

= (∆m1 ⊕ ∆m1)≫7
= 0

We conclude that if (∆m1)i = (∆m1)i+1 = 0 the equations are satisfied. This happens with
probability 1/4.

100

Cryptanalysis of Hash Functions

Case: i 6= j We state that Equation C.1 to C.8 hold for a = 2i, b = 2j with probability at least
1/4.

a∗ = 2j + 2i + m1
∆a∗ = ∆m1 if (∆m1)j = (∆m1)i = 0

d∗ = (2j ⊕ 2i ⊕m1)≫16
∆d∗ = ∆m1

c∗ = 2j−16 ⊕ 2i−16 ⊕m1 ≫16
∆c∗ = ∆m1

b∗ = (2j−16 ⊕ 2i−16 ⊕m1 ≫16 ⊕2i)≫12
∆b∗ = ∆m1

a′ = 2j + 2i + m1 + (2j−28 ⊕ 2i−28 ⊕m1 ≫28 ⊕2i−12) + m2
= (2i ⊕ 2j) + (2j−28 ⊕ 2i−28 ⊕m1 ≫28 ⊕2i−12)

∆a′ = ∆m1 if


i = j + 4 ⇒ (∆m1)i+1 = 0
i = j + 12 ⇒ (∆m1)i+1 = 0
i = j + 28 ⇒ (∆m1)i+1 = 0

d′ =
(
(2i ⊕ 2j) + (2j−28 ⊕ 2i−28 ⊕m1 ≫28 ⊕2i−12)

⊕2j−16 ⊕ 2i−16 ⊕m1 ≫16

)
≫8

= 2i−8 ⊕ 2j−8 ⊕ 2i−4 ⊕ 2j−4 ⊕ 2i−20 ⊕ 2i−24 ⊕ 2j−24

∆d′ = 0
c′ = (2i−8 ⊕ 2j−8 ⊕ 2i−4 ⊕ 2j−4 ⊕ 2i−20 ⊕ 2i−24 ⊕ 2j−24)+

(2j−16 ⊕ 2i−16 ⊕m1 ≫16)

∆c′ = ∆m1 if


i = j + 8 ⇒ (∆m1)i+1 = 0
i = j + 20 ⇒ (∆m1)i+1 = 0
i = j + 24 ⇒ (∆m1)i+1 = 0

b′ = (c′ ⊕ b∗)≫7
∆b′ = (∆c′ ⊕ ∆b∗)≫7

= (∆m1 ⊕ ∆m1)≫7= 0.

We conclude that if i 6= j mod 4 we find probability 1/4 since (∆m1)i = (∆m1)j = 0 are the only
two restrictions. If i = j mod 4, i 6= j we find probability 1/4 if i = j+ z for z = 4, 8, 12, 20, 24, 28
since there are two restrictions, (∆m1)i = 0 and (∆m1)i+1 = 0. Now there is one possibility left,
that is i = j + 16, here we only find one restriction, (∆m1)i = 0 and therefore the success
probability is 1/2.

Nieke Aerts 101

Appendix C: on BLAKE

Now we have shown that for any couple a = 2i, b = 2j the success probability is at least 1/4.
The same holds for the other couples, we will briefly address all these cases.

Case: b = d = 0 We state that Equation C.1 to C.8 hold for a = 2i, c = 2j with probability at
least 1/4.

a∗ = 2i + m1
∆a∗ = ∆m1 if (∆m1)i = 0

d∗ = (2i ⊕m1)≫16
∆d∗ = ∆m1

c∗ = (2i−16 ⊕m1 ≫16) + 2j

∆c∗ = ∆m1 if
{

i = j + 16 ⇒ (∆m1)i+1 = 0
i 6= j + 16 ⇒ (∆m1)i = 0

b∗ = (2i−16 ⊕m1 ≫16 ⊕2j)≫12
∆b∗ = ∆m1

a′ = 2i + m1 + (2i−28 ⊕m1 ≫28 ⊕2j−12) + m2
= 2i + (2i−28 ⊕m1 ≫28 ⊕2j−12)

∆a′ = ∆m1 if i = j + 20⇒ (∆m1)i+1 = 0
d′ =

(
2i ⊕ 2i−28 ⊕m1 ≫28 ⊕2j−12

⊕2i−16 ⊕m1 ≫16

)
≫8

= 2i−8 ⊕ 2i−4 ⊕ 2j−20 ⊕ 2i−24

∆d′ = 0
c′ = (2i−8 ⊕ 2i−4 ⊕ 2j−20 ⊕ 2i−24⊕)+

(2i−16 ⊕m1 ≫16 ⊕2j)

∆c′ = ∆m1 if


i = j + 4 ⇒ (∆m1)i+1 = 0
i = j + 8 ⇒ (∆m1)i+1 = 0
i = j + 24 ⇒ (∆m1)i+1 = 0
i = j + 28 ⇒ (∆m1)i+1 = 0

b′ = (c′ ⊕ b∗)≫7
∆b′ = (∆c′ ⊕ ∆b∗)≫7

= (∆m1 ⊕ ∆m1)≫7= 0.

We conclude that if i 6= j mod 4 we find probability 1/4 since (∆m1)i = (∆m1)j = 0 are the
only two restrictions. If i = j mod 4 we find probability 1/4 if i = j + z for z = 4, 8, 16, 20, 24, 28
since there are two restrictions, (∆m1)i = 0 and (∆m1)i+1 = 0. Now there are two options left,
that is i = j and i = j + 12, here we only find one restriction2, (∆m1)i = 0 and therefore the
success probability is 1/2.

2Since (∆m1)i = (∆m1)j for i = j mod 4.

102

Cryptanalysis of Hash Functions

Case: b = c = 0 We state that Equation C.1 to C.8 hold for a = 2i, d = 2j with probability at
least 1/4.

a∗ = 2i + m1
∆a∗ = ∆m1 if (∆m1)i = 0

d∗ = (2j ⊕ 2i ⊕m1)≫16
∆d∗ = ∆m1

c∗ = 2j−16 ⊕ 2i−16 ⊕m1 ≫16
∆c∗ = ∆m1

b∗ = (2j−16 ⊕ 2i−16 ⊕m1 ≫16)≫12
∆b∗ = ∆m1

a′ = 2i + m1 + (2j−28 ⊕ 2i−28 ⊕m1 ≫28) + m2
= 2i + (2j−28 ⊕ 2i−28 ⊕m1 ≫28)

∆a′ = ∆m1 if i = j + 4⇒ (∆m1)i+1 = 0
d′ =

(
(2i ⊕ 2j−28 ⊕ 2i−28 ⊕m1 ≫28)

⊕2j−16 ⊕ 2i−16 ⊕m1 ≫16

)
≫8

= 2i−8 ⊕ 2i−4 ⊕ 2j−4 ⊕ 2i−24 ⊕ 2j−24

∆d′ = 0
c′ = (2i−8 ⊕ 2i−4 ⊕ 2j−4 ⊕ 2i−24 ⊕ 2j−24)+

(2j−16 ⊕ 2i−16 ⊕m1 ≫16)

∆c′ = ∆m1 if


i 6= j mod 4 ⇒ (∆m1)j = 0
i = j + 8 ⇒ (∆m1)i+1 = 0
i = j + 12 ⇒ (∆m1)i+1 = 0
i = j + 20 ⇒ (∆m1)i+1 = 0
i = j + 24 ⇒ (∆m1)i+1 = 0

b′ = (c′ ⊕ b∗)≫7
∆b′ = (∆c′ ⊕ ∆b∗)≫7

= (∆m1 ⊕ ∆m1)≫7= 0.

We conclude that if i 6= j mod 4 we find probability 1/4 since (∆m1)i = (∆m1)j = 0 are the
only two restrictions. If i = j mod 4 we find probability 1/4 if i = j + z for z = 4, 8, 12, 20, 24
since there are two restrictions, (∆m1)i = 0 and (∆m1)i+1 = 0. There are some exceptions to
this result, for example, we find probability 1/2 for a = 215, d = 23, since in the second update
of c they will produce a carry, but the carry of the most significant bit is 232 = 0.

c′ = (27 ⊕ 211 ⊕ 231 ⊕ 211 ⊕ 223) + (219 ⊕ 231 ⊕m1 ≫16)

The probability for each case is at least 1/4.
For the cases z = 0, 16, 28 only restriction (∆m1)i = 0 is active, and therefore they have proba-
bility 1/2 to be successful.

Nieke Aerts 103

Appendix C: on BLAKE

Case: a = d = 0 We state that Equation C.1 to C.8 hold for b = 2i, c = 2j with probability at
least 1/4.

a∗ = m1 + 2i

∆a∗ = ∆m1 if (∆m1)i = 0
d∗ = m1 ≫16 ⊕2i−16

∆d∗ = ∆m1
c∗ = 2j + (m1 ⊕ 2i−16)

∆c∗ = ∆m1 if
{

i 6= j mod 4⇒ (∆m1)j = 0
i = j + 16⇒ (∆m1)i+1 = 0

b∗ = (2j ⊕m1 ⊕ 2i−16 ⊕ 2i)≫12
∆b∗ = ∆m1

a′ = (m1 ⊕ 2i) + (2j−12 ⊕m1 ⊕ 2i−28 ⊕ 2i−12) + m2
= 2i + (2j−12 ⊕m1 ⊕ 2i−28 ⊕ 2i−12)

∆a′ = ∆m1 if i = j + 20⇒ (∆m1)i+1 = 0
d′ = (2i ⊕ 2j−12 ⊕m1 ⊕ 2i−28 ⊕ 2i−12 ⊕m1 ≫16 ⊕2i−16)≫8

= 2i−8 ⊕ 2j−20 ⊕ 2i−4 ⊕ 2i−20 ⊕ 2i−24

∆d′ = 0
c′ = (2i−8 ⊕ 2j−20 ⊕ 2i−4 ⊕ 2i−20 ⊕ 2i−24)+

(2j ⊕m1 ⊕ 2i−16)

∆c′ = ∆m1 if


i = j + 4⇒ (∆m1)i+1 = 0
i = j + 8⇒ (∆m1)i+1 = 0
i = j + 24⇒ (∆m1)i+1 = 0
i = j + 28⇒ (∆m1)i+1 = 0

b′ = (c′ ⊕ b∗)≫7
∆b′ = (∆c′ ⊕ ∆b∗)≫7

= (∆m1 ⊕ ∆m1)≫7= 0.

We conclude that if i 6= j mod 4 we find probability 1/4 since (∆m1)i = (∆m1)j = 0 are the
only two restrictions. If i = j mod 4 we find probability 1/4 if i = j + z for z = 4, 8, 16, 20, 24, 28
since there are two restrictions, (∆m1)i = 0 and (∆m1)i+1 = 0. This does not cover all cases, e.g.
if b = 215, c = 231 we find a carry of 232 in the first update of c:

c∗ = 231 + (m1 ⊕ 231) = m1.

Again all cases have probability at least 1/4.
For the other cases z = 0, 12 only restriction (∆m1)i = 0 is active, and therefore they have
probability 1/2 to be successful.

104

Cryptanalysis of Hash Functions

Case: a = c = 0 We state that Equation C.1 to C.8 hold for b = 2i, d = 2j with probability at
least 1/4.

a∗ = 2i + m1
∆a∗ = ∆m1 if (∆m1)i = 0

d∗ = m1 ≫16 ⊕2i−16 ⊕ 2j−16

∆d∗ = ∆m1
c∗ = m1 ≫16 ⊕2i−16 ⊕ 2j−16

∆c∗ = ∆m1
b∗ = (2j−16 ⊕m1 ⊕ 2i−16 ⊕ 2i)≫12

∆b∗ = ∆m1
a′ = (m1 ⊕ 2i) + (2j−28 ⊕m1 ⊕ 2i−28 ⊕ 2i−12) + m2

= 2i + (2j−28 ⊕m1 ⊕ 2i−28 ⊕ 2i−12)
∆a′ = ∆m1 if i = j + 4⇒ (∆m1)i+1 = 0

d′ =
(

2i ⊕ 2j−28 ⊕m1 ⊕ 2i−28 ⊕ 2i−12 ⊕m1 ≫16

⊕2i−16 ⊕ 2j−16
)
≫8

= 2i−8 ⊕ 2j−4 ⊕ 2i−4 ⊕ 2i−20 ⊕ 2i−24 ⊕ 2j−24

∆d′ = 0
c′ = (2i−8 ⊕ 2j−4 ⊕ 2i−4 ⊕ 2i−20 ⊕ 2i−24 ⊕ 2j−24)+

(2j−16 ⊕m1 ⊕ 2i−16)

∆c′ = ∆m1 if



i 6= j mod 4⇒ (∆m1)j = 0
i = j + 8⇒ (∆m1)i+1 = 0
i = j + 12⇒ (∆m1)i+1 = 0
i = j + 20⇒ (∆m1)i+1 = 0
i = j + 24⇒ (∆m1)i+1 = 0
i = j + 28⇒ (∆m1)i+1 = 0

b′ = (c′ ⊕ b∗)≫7
∆b′ = (∆c′ ⊕ ∆b∗)≫7

= (∆m1 ⊕ ∆m1)≫7= 0.

We conclude that if i 6= j mod 4 we find probability 1/4 since (∆m1)i = (∆m1)j = 0 are the
only two restrictions. If i = j mod 4 we find probability 1/4 if i = j + z for z = 4, 8, 12, 20, 24
since there are two restrictions, (∆m1)i = 0 and (∆m1)i+1 = 0. This does not cover all cases, e.g.
if b = 215, c = 23 we find a carry of 232 in the second update of c:

c′ = (2i−8 ⊕ 231 ⊕ 2i−4 ⊕ 2i−20 ⊕ 2i−24 ⊕ 2j−24) + (2j−16 ⊕m1 ⊕ 231).

Again all cases have probability at least 1/4.
For the other cases z = 0, 16, 28 only restriction (∆m1)i = 0 is active, and therefore they have
probability 1/2 to be successful.

Nieke Aerts 105

Appendix C: on BLAKE

Case: a = b = 0 We state that Equation C.1 to C.8 hold for c = 2i, d = 2j with probability at
least 1/4.

a∗ = m1
∆a∗ = ∆m1

d∗ = 2j−16 ⊕m1 ≫16
∆d∗ = ∆m1

c∗ = (2j−16 ⊕m1) + 2i

∆c∗ = ∆m1 if
{

(∆m1)i = 0
i = j + 16⇒ (∆m1)i+1 = 0

b∗ = (2j−16 ⊕m1 ⊕ 2i)≫12
∆b∗ = ∆m1

a′ = m1 + (2j−28 ⊕m1 ⊕ 2i−12) + m2
= 2j−28 ⊕m1 ⊕ 2i−12

∆a′ = ∆m1
d′ = (2j−16 ⊕m1 ⊕ 2j−28 ⊕m1 ⊕ 2i−12)≫8

= 2j−24 ⊕ 2j−4 ⊕ 2i−20

∆d′ = 0
c′ = (2j−24 ⊕ 2j−4 ⊕ 2i−20) + (2j−16 ⊕m1 ⊕ 2i)

∆c′ = ∆m1 if


i 6= j mod 4⇒ (∆m1)j = 0
i = j + 4⇒ (∆m1)i+1 = 0
i = j + 8⇒ (∆m1)i+1 = 0
i = j + 28⇒ (∆m1)i+1 = 0

b′ = (c′ ⊕ b∗)≫7
∆b′ = (∆c′ ⊕ ∆b∗)≫7

= (∆m1 ⊕ ∆m1)≫7= 0.

We conclude that if i 6= j mod 4 we find probability 1/4 since (∆m1)i = (∆m1)j = 0 are the
only two restrictions. If i = j mod 4 we find probability 1/4 if i = j + z for z = 4, 8, 16, 24 since
there are two restrictions, (∆m1)i = 0 and (∆m1)i+1 = 0. This does not cover all cases, e.g. if
b = 231, c = 215 we find a carry of 232 in the first update of c:

c∗ = (231 ⊕m1) + 231 = m1

Again all cases have probability at least 1/4.
For the other cases z = 0, 12, 20, 28 only restriction (∆m1)i = 0 is active, and therefore they have
probability 1/2 to be successful.

Conclusion

We conclude that we have proven all separate cases and therefore
Lemma 11. If precisely two of the four input values (a, b, c, d) are zero, and the other two are a power of
2, then

Gm1,m2(a, b, c, d)− Gm′1,m′2
(a, b, c, d) = (∆, 0, ∆′, 0)

with probability at least 1/4.

has been proven.

When one input variable is zero.

Lemma 12. If precisely one of the four input values (a, b, c, d) are zero, and the other three are a power
of 2, then

Gm1,m2(a, b, c, d)− Gm′1,m′2
(a, b, c, d) = (∆, 0, ∆′, 0)

with probability at least 1/8.

106

Cryptanalysis of Hash Functions

We will again look at the separate cases, a = 0, b = 0, c = 0 or d = 0.

Case a = 0 We state that Equation C.1 to C.8 hold for b = 2i, c = 2j, d = 2k with probability at
least 1/8.

a∗ = 2i + m1
∆a∗ = ∆m1 if (∆m1)i = 0

d∗ = (2k ⊕ 2i ⊕m1)≫16
∆d∗ = ∆m1

c∗ = 2j + (2k−16 ⊕ 2i−16 ⊕m1)

∆c∗ = ∆m1 if


i 6= j mod 4⇒ (∆m1)j = 0
i = j + 16⇒ (∆m1)i+1 = 0
j = k + 16⇒ (∆m1)i+1 = 0

b∗ = (2j ⊕ 2k−16 ⊕ 2i−16 ⊕m1 ⊕ 2i)≫12
∆b∗ = ∆m1

a′ = 2i + (2j−12 ⊕ 2k−28 ⊕ 2i−28 ⊕m1 ⊕ 2i−12)

∆a′ = ∆m1 if
{

i = j + 20⇒ (∆m1)i+1 = 0
i = k + 4⇒ (∆m1)i+1 = 0

d′ =
(

2k−16 ⊕ 2i−16 ⊕m1 ⊕ 2i ⊕ 2j−12

⊕2k−28 ⊕ 2i−28 ⊕m1 ⊕ 2i−12
)
≫8

= 2k−24 ⊕ 2i−24 ⊕ 2i−8 ⊕ 2j−20⊕
2k−4 ⊕ 2i−4 ⊕ 2i−20

∆d′ = 0
c′ = (2j ⊕ 2k−16 ⊕ 2i−16 ⊕m1)+(

2k−24 ⊕ 2i−24 ⊕ 2i−8 ⊕ 2j−20⊕

2k−4 ⊕ 2i−4 ⊕ 2i−20
)

∆c′ = ∆m1 if



i 6= k mod 4
∧

j 6= k mod 4⇒ (∆m1)k = 0
i = j + 28⇒ (∆m1)i+1 = 0
i = k + 8⇒ (∆m1)i+1 = 0
i = k + 24⇒ (∆m1)i+1 = 0
j = k + 4⇒ (∆m1)i+1 = 0
j = k + 8⇒ (∆m1)i+1 = 0
j = k + 28⇒ (∆m1)i+1 = 0

b′ = (c′ ⊕ b∗)≫7
∆b′ = (∆c′ ⊕ ∆b∗)≫7

= (∆m1 ⊕ ∆m1)≫7= 0.

If i 6= j mod 4, i 6= k mod 4 and j 6= k mod 4 then we find probability 1/8 as we need

(∆m1)i = (∆m1)j = (∆m1)k = 0.

If one of the three equalities above does not hold, the probability is decreased with 1/2, if two of
these do not hold, by 1/4. Now we consider i = j + z, i = k + z̃ and j = k + y. Now if i = j = k
mod 4 we need (∆m1)i = 0, which has probability 1/2. Now if z = 16, 20, 28 the probability is
decreased with a factor 1/2, then if z̃ = 4, 8, 24 the probability is again decreased with a factor
1/2. Last, if y = 4, 8, 16, 28 the probability is again decreased with a factor 1/2.
For example, we find that a = 0, b = 20, 20, 20 has probability 1/2. And if we have i 6= j mod 4,
i 6= k mod 4 and j = k mod 4 and y = 4 we find probability 1/8, unless j = 21, k = 15 (since
then the carry is 232).
Thus, in the worst case we find success probability 1/8.
The other cases are similar, and we will only state the proofs, not the conclusions.

Nieke Aerts 107

Appendix C: on BLAKE

Case b = 0 We state that Equation C.1 to C.8 hold for a = 2i, c = 2j, d = 2k with probability at
least 1/8.

a∗ = 2i + m1
∆a∗ = ∆m1 if (∆m1)i = 0

d∗ = (2k ⊕ 2i ⊕m1)≫16
∆d∗ = ∆m1

c∗ = 2j + (2k−16 ⊕ 2i−16 ⊕m1)

∆c∗ = ∆m1 if


i 6= j mod 4⇒ (∆m1)j = 0
i = j + 16⇒ (∆m1)i+1 = 0
j = k + 16⇒ (∆m1)i+1 = 0

b∗ = (2j ⊕ 2k−16 ⊕ 2i−16 ⊕m1)≫12
∆b∗ = ∆m1

a′ = 2i + (2j−12 ⊕ 2k−28 ⊕ 2i−28 ⊕m1)

∆a′ = ∆m1 if
{

i = j + 20⇒ (∆m1)i+1 = 0
i = k + 4⇒ (∆m1)i+1 = 0

d′ =
(

2k−16 ⊕ 2i−16 ⊕m1 ⊕ 2i⊕

2j−12 ⊕ 2k−28 ⊕ 2i−28 ⊕m1

)
≫8

= 2k−24 ⊕ 2i−24 ⊕ 2i−8 ⊕ 2j−20⊕
2k−4 ⊕ 2i−4

∆d′ = 0
c′ = (2j ⊕ 2k−16 ⊕ 2i−16 ⊕m1)+(

2k−24 ⊕ 2i−24 ⊕ 2i−8⊕

2j−20 ⊕ 2k−4 ⊕ 2i−4
)

∆c′ = ∆m1 if



i 6= k mod 4
∧

j 6= k mod 4⇒ (∆m1)k = 0
i = j + 8⇒ (∆m1)i+1 = 0
i = j + 28⇒ (∆m1)i+1 = 0
i = k + 12⇒ (∆m1)i+1 = 0
i = k + 24⇒ (∆m1)i+1 = 0
j = k + 4⇒ (∆m1)i+1 = 0
j = k + 8⇒ (∆m1)i+1 = 0
j = k + 28⇒ (∆m1)i+1 = 0

b′ = (c′ ⊕ b∗)≫7
∆b′ = (∆c′ ⊕ ∆b∗)≫7

= (∆m1 ⊕ ∆m1)≫7= 0.

108

Cryptanalysis of Hash Functions

Case c = 0 We state that Equation C.1 to C.8 hold for a = 2i, b = 2j, d = 2k with probability at
least 1/8.

a∗ = 2i + 2j + m1

∆a∗ = ∆m1 if
{

i = j⇒ (∆m1)i+1 = 0
i 6= j⇒ (∆m1)i = 0

∧
(∆m1)j = 0

d∗ = (2k ⊕ 2i ⊕ 2j ⊕m1)≫16
∆d∗ = ∆m1

c∗ = 2k−16 ⊕ 2i−16 ⊕ 2j−16 ⊕m1
∆c∗ = ∆m1

b∗ = (2j ⊕ 2k−16 ⊕ 2i−16 ⊕ 2j−16 ⊕m1)≫12
∆b∗ = ∆m1

a′ = (2i ⊕ 2j) + (2j−12 ⊕ 2k−28 ⊕ 2i−28 ⊕ 2j−28 ⊕m1)

∆a′ = ∆m1 if


i = j + 4⇒ (∆m1)i+1 = 0
i = j + 20⇒ (∆m1)i+1 = 0
i = j + 28⇒ (∆m1)i+1 = 0
i = k + 4⇒ (∆m1)i+1 = 0
j = k + 4⇒ (∆m1)i+1 = 0

d′ =
(

2k−16 ⊕ 2i−16 ⊕ 2j−16 ⊕m1 ⊕ 2i⊕

2j ⊕ 2j−12 ⊕ 2k−28 ⊕ 2i−28 ⊕m1

)
≫8

= 2k−24 ⊕ 2i−24 ⊕ 2j−24 ⊕ 2i−8⊕
2j−8 ⊕ 2j−20 ⊕ 2k−4 ⊕ 2i−4

∆d′ = 0
c′ = (2j ⊕ 2k−16 ⊕ 2i−16 ⊕m1)+(

2k−24 ⊕ 2i−24 ⊕ 2j−24 ⊕ 2i−8⊕

2j−8 ⊕ 2j−20 ⊕ 2k−4 ⊕ 2i−4
)

∆c′ = ∆m1 if



i 6= k mod 4
∧

j 6= k mod 4⇒ (∆m1)k = 0
i = j + 8⇒ (∆m1)i+1 = 0
i = j + 24⇒ (∆m1)i+1 = 0
i = k + 8⇒ (∆m1)i+1 = 0
i = k + 12⇒ (∆m1)i+1 = 0
i = k + 20⇒ (∆m1)i+1 = 0
i = k + 24⇒ (∆m1)i+1 = 0
j = k + 8⇒ (∆m1)i+1 = 0
j = k + 24⇒ (∆m1)i+1 = 0
j = k + 28⇒ (∆m1)i+1 = 0

b′ = (c′ ⊕ b∗)≫7
∆b′ = (∆c′ ⊕ ∆b∗)≫7

= (∆m1 ⊕ ∆m1)≫7= 0.

Nieke Aerts 109

Appendix C: on BLAKE

Case d = 0 We state that Equation C.1 to C.8 hold for a = 2i, b = 2j, c = 2k with probability at
least 1/8.

a∗ = 2i + 2j + m1

∆a∗ = ∆m1 if
{

i = j⇒ (∆m1)i+1 = 0
i 6= j⇒ (∆m1)i = 0

∧
(∆m1)j = 0

d∗ = (2i ⊕ 2j ⊕m1)≫16
∆d∗ = ∆m1

c∗ = 2k + (2i−16 ⊕ 2j−16 ⊕m1)

∆c∗ = ∆m1if


i = k mod 4⇒ (∆m1)k = 0
i = k + 16⇒ (∆m1)i+1 = 0
j = k + 16⇒ (∆m1)k+1 = 0

b∗ = (2j ⊕ 2k ⊕ 2i−16 ⊕ 2j−16 ⊕m1)≫12
∆b∗ = ∆m1

a′ = (2i ⊕ 2j) + (2j−12 ⊕ 2k−12 ⊕ 2i−28 ⊕ 2j−28 ⊕m1)

∆a′ = ∆m1 if



i = j mod 4
∧

k = j mod 4⇒ (∆m1)j = 0
i = j + 4⇒ (∆m1)i+1 = 0
i = j + 20⇒ (∆m1)i+1 = 0
i = j + 28⇒ (∆m1)i+1 = 0
i = k + 20⇒ (∆m1)i+1 = 0
j = k + 20⇒ (∆m1)i+1 = 0

d′ =
(

2i−16 ⊕ 2j−16 ⊕m1 ⊕ 2i ⊕ 2j⊕

2j−12 ⊕ 2k−12 ⊕ 2i−28 ⊕ 2j−28 ⊕m1

)
≫8

= 2i−24 ⊕ 2j−24 ⊕ 2i−8 ⊕ 2j−8⊕
2j−20 ⊕ 2k−20 ⊕ 2i−4 ⊕ 2j−4

∆d′ = 0
c′ = (2k ⊕ 2i−16 ⊕ 2j−16 ⊕m1)+(

2i−24 ⊕ 2j−24 ⊕ 2i−8 ⊕ 2j−8⊕

2j−20 ⊕ 2k−20 ⊕ 2i−4 ⊕ 2j−4
)

∆c′ = ∆m1 if



i 6= k mod 4
∧

j 6= k mod 4⇒ (∆m1)k = 0
i = j + 8⇒ (∆m1)i+1 = 0
i = j + 12⇒ (∆m1)i+1 = 0
i = j + 24⇒ (∆m1)i+1 = 0
i = k + 8⇒ (∆m1)i+1 = 0
i = k + 12⇒ (∆m1)i+1 = 0
i = k + 24⇒ (∆m1)i+1 = 0
j = k + 4⇒ (∆m1)i+1 = 0
j = k + 8⇒ (∆m1)i+1 = 0
j = k + 24⇒ (∆m1)i+1 = 0
j = k + 28⇒ (∆m1)i+1 = 0

b′ = (c′ ⊕ b∗)≫7
∆b′ = (∆c′ ⊕ ∆b∗)≫7

= (∆m1 ⊕ ∆m1)≫7= 0.

Conclusion

We conclude that we have proven all separate cases and therefore
Lemma 13. If precisely one of the four input values (a, b, c, d) are zero, and the other three are a power
of 2, then

Gm1,m2(a, b, c, d)− Gm′1,m′2
(a, b, c, d) = (∆, 0, ∆′, 0)

with probability at least 1/8.

has been proven.

110

Cryptanalysis of Hash Functions

No zero input variables
Lemma 14. If precisely none of the input variables is zero and all of them are a power of 2, then

Gm1,m2(a, b, c, d)− Gm′1,m′2
(a, b, c, d) = (∆, 0, ∆′, 0)

with probability at least 1/16.

We state that Equation C.1 to C.8 hold for a = 2i, b = 2j, c = 2k, d = 2l with probability at
least 1/16.

a∗ = 2i + 2j + m1

∆a∗ = ∆m1 if
{

i = j⇒ (∆m1)i+1 = 0
i 6= j⇒ (∆m1)i = 0

∧
(∆m1)j = 0

d∗ = (2l ⊕ 2i ⊕ 2j ⊕m1)≫16
∆d∗ = ∆m1

c∗ = 2k + (2l−16 ⊕ 2i−16 ⊕ 2j−16 ⊕m1)

∆c∗ = ∆m1 if


i 6= k mod 4

∧
j 6= k mod 4⇒ (∆m1)k = 0

i = k + 16⇒ (∆m1)i+1 = 0
j = k + 16⇒ (∆m1)j+1 = 0
k = l + 16⇒ (∆m1)k+1 = 0

b∗ = (2j ⊕ 2k ⊕ 2l−16 ⊕ 2i−16 ⊕ 2j−16 ⊕m1)≫12
∆b∗ = ∆m1

a′ = 2i + 2j + m1 + (2j−12 ⊕ 2k−12 ⊕ 2l−28 ⊕ 2i−28 ⊕ 2j−28 ⊕m1) + m2
= 2i + 2j + (2j−12 ⊕ 2k−12 ⊕ 2l−28 ⊕ 2i−28 ⊕ 2j−28 ⊕m1)

∆a′ = ∆m1 if



i = j + 4⇒ (∆m1)i+1 = 0
i = j + 20⇒ (∆m1)i+1 = 0
i = j + 28⇒ (∆m1)i+1 = 0
i = k + 20⇒ (∆m1)i+1 = 0
i = l + 4⇒ (∆m1)i+1 = 0
j = k + 20⇒ (∆m1)j+1 = 0
j = l + 4⇒ (∆m1)k+1 = 0

d′ =
(
2i ⊕ 2j ⊕ 2j−12 ⊕ 2k−12 ⊕ 2l−28 ⊕ 2i−28 ⊕ 2j−28 ⊕m1

2l−16 ⊕ 2i−16 ⊕ 2j−16 ⊕m1
)
≫8

=
(
2i ⊕ 2j ⊕ 2j−12 ⊕ 2k−12 ⊕ 2l−28 ⊕ 2i−28 ⊕ 2j−28

2l−16 ⊕ 2i−16 ⊕ 2j−16)≫8
∆d′ = 0

c′ = (2k ⊕ 2l−16 ⊕ 2i−16 ⊕ 2j−16 ⊕m1) +
(
2l−24 ⊕ 2i−24 ⊕ 2j−24⊕

2i−8 ⊕ 2j−8 ⊕ 2j−20 ⊕ 2k−20 ⊕ 2l−4 ⊕ 2i−4 ⊕ 2j−4)

∆c′ = ∆m1 if



i = j + 8⇒ (∆m1)i+1 = 0
i = j + 12⇒ (∆m1)i+1 = 0
i = j + 24⇒ (∆m1)i+1 = 0
i = k + 4⇒ (∆m1)i+1 = 0
i = k + 8⇒ (∆m1)i+1 = 0
i = k + 24⇒ (∆m1)i+1 = 0
i = k + 28⇒ (∆m1)i+1 = 0
i = l + 8⇒ (∆m1)i+1 = 0
i = l + 12⇒ (∆m1)i+1 = 0
i = l + 20⇒ (∆m1)i+1 = 0
i = l + 24⇒ (∆m1)i+1 = 0
j = k + 4⇒ (∆m1)j+1 = 0
j = k + 8⇒ (∆m1)j+1 = 0
j = k + 24⇒ (∆m1)j+1 = 0
j = k + 28⇒ (∆m1)j+1 = 0
j = l + 8⇒ (∆m1)k+1 = 0
j = l + 12⇒ (∆m1)k+1 = 0
j = l + 20⇒ (∆m1)k+1 = 0
j = l + 24⇒ (∆m1)k+1 = 0
k = l + 4⇒ (∆m1)k+1 = 0
k = l + 8⇒ (∆m1)k+1 = 0
k = l + 28⇒ (∆m1)k+1 = 0

b′ = (c′ ⊕ b∗)≫7
∆b′ = (∆c′ ⊕ ∆b∗)≫7

= (∆m1 ⊕ ∆m1)≫7= 0.

In total we find at least probability 1/16 if at least one of i, j, k, l is zero. We will give a few
examples of special cases.

Nieke Aerts 111

Appendix C: on BLAKE

Probability 1/16 Obviously if none of i, j, k, l is equal to another modulo 4, we find that

(∆m1)i = (∆m1)j = (∆m1)k = (∆m1)l = 0

so m1 = m2 = 0 is the only possibility and this has probability 1/16.

Probability 1/8 If precisely one of i, j, k, l is equal to another modulo 4, say i = j mod 4, we
find that

(∆m1)i = (∆m1)j = (∆m1)k = (∆m1)l = 0

with probability 1/8, as there is one of the four bits in the repeated set of m1 that can be either 0
or 1. There are some exceptions in this case, i.e. if one of the restrictions given above is satisfied.
Therefore, we will give an example for which none of the restrictions hold: a = 21, b = 22, c =
23, d = 25 gives probability 1/8.

Probability 1/4 If i = k mod 4 and j = l mod 4, there are cases for which

(∆m1)i = (∆m1)j = (∆m1)k = (∆m1)l = 0

with probability 1/4, as there are two of the four bits in the repeated set of m1 that can be
either 0 or 1. There are many exceptions in this case, i.e. if one of the restrictions given above is
satisfied. Therefore, we will give an example for which none of the restrictions hold: a = 21, b =
22, c = 25, d = 22 gives probability 1/4

Probability 1/2 For l = 0 we found 14 starting states which have probability 1/2 to end in
(∆, 0, ∆′, 0). All of these have at least i = 0 or k = 0, unless the caries are 232, which happens for
i = j = k = 31.
The fourteen states for l = 0 are:

i j k l
12 0 0 0
20 0 0 0
4 0 4 0

16 0 4 0
16 0 16 0
16 0 24 0
0 4 4 0
0 12 12 0
0 16 4 0
0 16 16 0
0 16 24 0
0 20 8 0
0 20 20 0

31 31 31 0

Conclusion

We conclude that
Lemma 15. If precisely none of the input variables is zero and all of them are a power of 2, then

Gm1,m2(a, b, c, d)− Gm′1,m′2
(a, b, c, d) = (∆, 0, ∆′, 0)

with probability at least 1/16.

112

Cryptanalysis of Hash Functions

has been proven.

C.4 Construction of Fixed Point Algorithms

Here we will explain how to construct the fixed point algorithms and we will give some exam-
ples of fixed points.

Linearization Ḡ

The eight steps of the linearization of Ḡ are given by

1. a∗ = a⊕ b⊕m1 5. a = a∗ ⊕ b∗ ⊕m2
2. d∗ = (a∗ ⊕ d)≫16 6. d = (a⊕ d∗)≫8
3. c∗ = c⊕ d∗ 7. c = c∗ ⊕ d
4. b∗ = (b⊕ c∗)≫12 8. b = (b∗ ⊕ c)≫7 .

Now following these eight steps we construct the algorithm, for fixed b, b∗.

8. c = b∗ ⊕ b≪7 4. c∗ = b∗≪12 ⊕b
7. d = c∗ ⊕ c 3. d∗ = c∗ ⊕ c

6. a = d∗ ⊕ d≪8 2. a∗ = d∗≪16 ⊕d
5. m2 = a∗ ⊕ a⊕ b∗ 1. m1 = a∗ ⊕ a⊕ b

Examples

b b∗ a b c d m1 m2
0 0 0 0 0 0 0 0
0 1 1052929 0 1 4097 269549824 269549825
1 0 33153 1 128 129 8487169 8487168
216 0 2172715008 65536 8388608 8454144 2164326529 2164260993
0 216 285278224 0 65536 268500992 16781329 16846865

Original G

The eight steps of Ḡ are given by

1. a∗ = a + b + m1 5. a = a∗ + b∗ + m2
2. d∗ = (a∗ ⊕ d)≫16 6. d = (a⊕ d∗)≫8
3. c∗ = c + d∗ 7. c = c∗ + d
4. b∗ = (b⊕ c∗)≫12 8. b = (b∗ ⊕ c)≫7 .

Now following these eight steps we construct the algorithm, for fixed b, b∗.

8. c = b∗ ⊕ b≪7 4. c∗ = b∗≪12 ⊕b
7. d = c− c∗ 3. d∗ = c∗ − c
6. a = d∗ ⊕ d≪8 2. a∗ = d∗≪16 ⊕d
5. m2 = a− a∗ − b∗ 1. m1 = a∗ − a− b.

Nieke Aerts 113

Appendix C: on BLAKE

Examples

b b∗ a b c d m1 m2
0 0 0 0 0 0 0 0
0 1 4293922304 0 1 4294963201 4027638273 267329022
1 0 4294934657 1 128 127 4286742270 8225025
216 0 2155937792 65536 8388608 8323072 2147352449 2147549311
0 216 251592944 0 65536 4026597376 3775008527 519893233

C.5 Proof on DC’s

Lemma 16.
DP+[∆j − ∆i, ∆i → ∆j] = 2−||∆i ||−||∆j−∆i ||.

Proof. Again we assume that the MSB’s are 0, otherwise we should multiply the solution by two.

DP+[∆j − ∆i, ∆i → ∆j] = Pr
x,y
[(x + y)⊕ ((x⊕ (∆j − ∆i)) + (y⊕ ∆i)) = ∆j].

Let ∆MSB
i = ∆MSB

j = 0. Now if (x + y) and

((x⊕ (∆j − ∆i)) + (y⊕ ∆i)).

have the same set of carry’s we have equality. So for each bit k we have

(∆j − ∆i)
k = ∆k

i = 0 if xk = yk = 1
(∆j − ∆i)

k = 0 if yk = 1
∆k

i = 0 if xk = 1.

Therefore, we have two out of four options for xk, yk if (∆j−∆i)
k and ∆k

i are given and therefore
we have the same carry for each bit with probability 1/2 for randomly chosen x, y. When the
bits (∆j − ∆i)

k and ∆k
i are zero, we have no restrictions for x and y. We conclude that if either

(∆j − ∆i)
k = 1 or ∆k

i = 1 we loose half of the options. Therefore

DP+[∆j − ∆i, ∆i → ∆j] = 2−||∆i ||−||∆j−∆i ||.

Note that we again excluded the most significant bits, since the carry of the MSB’s will disappear
due to the modular addition. So to be precise, we have

DP+[∆j − ∆i, ∆i → ∆j] = 2−||∆i ||−||∆j−∆i ||+∆MSB
i +(∆j−∆i)

MSB
.

114

Appendix D

Proofs on combinations of operations

Note that all these proofs are covered by Sokolowski [38] or Daum [14].

under (left–)Shift

Let x = x0||x1 and y = y0||y1, where x0, y0 consist of j bits and x1, y1 of n− j = k bits.

Addition

Pr[x �j +y�j= (x + y)�j] = 1

Proof.

Pr[(x + y)�j= x �j +y�j] = Pr[(x + y)�j= 2jx0 mod 2n + 2jx1 mod 2n]

= Pr[(x0 · 2j + x1 + y0 · 2j + y1)�j= (2jx0 + 2jx1) mod 2n]

= Pr[(x1 + y1)�j= (2jx0 + 2jx1) mod 2n]

= Pr[2j(x1 + y1) mod 2n = (2jx0 + 2jx1) mod 2n]
= Pr[2jx1 + 2jy1 mod 2n = (2jx0 + 2jx1) mod 2n]
= 1

Multiplication

Pr[U (x �j) = U (x)�j] = 1

Proof.

Pr[U (x �j) = U (x)�j] = Pr[3(x �j) mod 2n = 3x �j mod 2n]

= Pr[3(2jx) mod 2n = 2j · 3x mod 2n]
= Pr[2j · 3x mod 2n = 2j · 3x mod 2n]
= 1

115

Appendix D: Proofs on combinations of operations

Pr[V(x �j) = V(x)�j] = 1

Proof.

Pr[V(x �j) = V(x)�j] = Pr[5(x �j) mod 2n = 5x �j mod 2n]

= Pr[5(2jx) mod 2n = 2j · 5x mod 2n]
= Pr[2j · 5x mod 2n = 2j · 5x mod 2n]
= 1

Bitwise Operations

Pr[x �j ∧y�j = (x ∧ y)�j] = 1

Proof.
Pr[x �j ∧y�j = (x ∧ y)�j] = Pr[∀i : xi ∧ yi = xi ∧ yi]

= 1

under (right–)Shift

Recall that x = x0||x1 and y = y0||y1. Let c0 the carry of x0 + y0, that is, c0 · 2j + (x0 + y0
mod 2j) = x0 + y0 and c1 is the carry of x1 + y1.

Addition

Pr[x �k +y�k= (x + y)�k] =
1
4
(1 + 2−k)(1 + 2k−n)

Proof. We distinguish three cases: c0 = 1, c0 = 0∧ c1 = 1 and c0 = 0∧ c1 = 0.
Case 1:c0 = 1
In this case we never have equality due to the carry of x0 + y0:

x �k +y�k = x0 + y0
≥ x0 + y0 − c0 · 2k + c1
≥ x0 + y0 + c1 mod 2k

= (x + y)�k

Case 2:c0 = 0∧ c1 = 1
In this case we never have equality due to the carry of x1 + y1.

x �k +y�k = x0 + y0
6= x0 + y0 + c1 mod 2j

= (x + y)�k

116

Cryptanalysis of Hash Functions

Case 3:c0 = 0∧ c1 = 0
In this case we have equality with probability 1:

x �k +y�k = x0 + y0
= x0 + y0 + c1 mod 2j

= (x + y)�k

So we have
Pr[x �k +y�k= (x + y)�k] = Pr[c0 = 0∧ c1 = 0]

Pr[c0 = 0∧ c1 = 0] = Pr[x0 + y0 < 2j ∧ x1 + y1 < 2k]
= Pr[x0 + y0 < 2j]Pr[x1 + y1 < 2k]

And
Pr[x0 + y0 < 2j] = 2−2j ·∑2j

i1=0 ∑2j

i2=0 1[i1 + i2 < 2j]

= 2−2j ·∑2j

i=0 2j − i
= 2−2j · 22j + 2j − 1/2

(
2j(1 + 2j)

)
= 2−2j · 1

2 (2
2j + 2j)

= 1
2 (1 + 2−j)

And thus we find

Pr[x �k +y�k= (x + y)�k] = Pr[c0 = 0∧ c1 = 0]
= 1

2 (1 + 2−j) · 1
2 (1 + 2−k)

= 1
4 (1 + 2−k)(1 + 2k−n)

under Rotation

Addition

Pr[x≪j +y≪j= (x + y)≪j] =
1
4 (1 + 2−j)(1 + 2j−n)

Proof.

Pr[x≪j +y≪j= (x + y)≪j] = Pr[x �j +x �n−j +y�j +y�n−j= (x + y)�j +(x + y)�n−j]
= Pr[x �n−j +y�n−j= (x + y)�n−j]

= 1
4 (1 + 2−j)(1 + 2j−n)

Nieke Aerts 117

Index

Algebraic Normal Form, 19
ARX, 7
Atypical input (ε), 42

Boomerang Attack, 17

Chaining Variable, 8
Collision Resistance, 7
Computationally infeasible, 10
Cryptographic hash function, 6
Cube Attack, 19
Cube Tester, 21
Cube variables, 19

Difference Lemma, 30
Differentiability, 12
Differential Cryptanalysis, 14
Digest, 6
Distinguisher, 12

Free–start–collision, 11

Guess–and–Determine Technique, 25

Hash, 6
Hill Climbing Method, 55

Indifferentiability, 12
Initialization Value, 8

Known–Plaintext Attack, 12

Length Extension Attack, 8
Linear Cryptanalysis, 12

Maxterm, 19
Merkle-Damgård (MD), 8

Narrow Pipe, 8
Near–collision, 11
Neutral Bits, 20

Padding, 8
Prefix–free, 8
Prefix-free, 9
Preimage resistance, 6

Pseudo–collision, 11

Random Oracle, 12
Rebound Attack, 18
Relatives (ε), 41

S–Box, 7
Second–preimage resistance, 6
Statistical Distance, 41
Superpoly variables, 19

Theoretically Broken, 10
Truncation, 10

Wide Pipe, 7

118

